File size: 3,780 Bytes
389e2c1
e88c671
7324e16
389e2c1
 
99485d2
 
e88c671
389e2c1
99485d2
 
 
 
7d725c4
389e2c1
 
99485d2
e88c671
 
 
99485d2
e88c671
7d725c4
e88c671
99485d2
e88c671
 
 
 
 
 
 
 
7d725c4
7cf43f8
e88c671
 
 
7cf43f8
7d725c4
e88c671
7d725c4
 
e88c671
7d725c4
389e2c1
 
 
 
 
 
 
92d0074
 
72cac42
99485d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
389e2c1
 
 
 
92d0074
d092371
389e2c1
 
92d0074
d092371
389e2c1
 
 
 
 
 
92d0074
 
 
 
d092371
 
 
 
92d0074
 
389e2c1
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
---
language:
- sv
license: apache-2.0
tags:
- automatic-speech-recognition
- robust-speech-event
- hf-asr-leaderboard
datasets:
- mozilla-foundation/common_voice_8_0
metrics:
- wer
- cer
base_model: facebook/wav2vec2-xls-r-1b
model-index:
- name: wav2vec2-large-xls-r-1b-Swedish
  results:
  - task:
      type: automatic-speech-recognition
      name: Speech Recognition
    dataset:
      name: Common Voice sv-SE
      type: mozilla-foundation/common_voice_8_0
      args: sv-SE
    metrics:
    - type: wer
      value: 14.04
      name: Test WER With LM
    - type: cer
      value: 4.86
      name: Test CER  With LM
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: Robust Speech Event - Dev Data
      type: speech-recognition-community-v2/dev_data
      args: sv
    metrics:
    - type: wer
      value: 29.69
      name: Test WER
    - type: cer
      value: 12.59
      name: Test CER
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-xls-r-1b-Swedish

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice dataset.
It achieves the following results on the evaluation set:

**Without LM**
- Loss: 0.3370
- Wer: 18.44 
- Cer: 5.75

**With LM**
- Loss: 0.3370
- Wer: 14.04 
- Cer: 4.86

#### Evaluation Commands
1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test`

```bash
python eval.py --model_id kingabzpro/wav2vec2-large-xls-r-1b-Swedish --dataset mozilla-foundation/common_voice_8_0 --config sv-SE --split test
```

2. To evaluate on `speech-recognition-community-v2/dev_data`

```bash
python eval.py --model_id kingabzpro/wav2vec2-large-xls-r-1b-Swedish --dataset speech-recognition-community-v2/dev_data --config sv --split validation --chunk_length_s 5.0 --stride_length_s 1.0
```

### Inference With LM

```python
import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "kingabzpro/wav2vec2-large-xls-r-1b-Swedish"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "sv-SE", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
    logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
```

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 50
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    | Cer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 3.1562        | 11.11 | 500  | 0.4830          | 0.3729 | 0.1169 |
| 0.5655        | 22.22 | 1000 | 0.3553          | 0.2381 | 0.0743 |
| 0.3376        | 33.33 | 1500 | 0.3359          | 0.2179 | 0.0696 |
| 0.2419        | 44.44 | 2000 | 0.3232          | 0.1844 | 0.0575 |


### Framework versions

- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0