File size: 4,706 Bytes
389e2c1
99485d2
 
 
389e2c1
 
99485d2
 
389e2c1
99485d2
 
 
 
389e2c1
 
99485d2
 
 
 
 
 
 
 
 
 
 
094e49e
99485d2
 
 
 
 
 
 
 
 
 
 
 
 
 
094e49e
99485d2
 
 
 
 
 
 
 
 
 
 
 
389e2c1
 
 
 
 
 
 
92d0074
 
72cac42
99485d2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
389e2c1
 
 
 
92d0074
d092371
389e2c1
 
92d0074
d092371
389e2c1
 
 
 
 
 
92d0074
 
 
 
d092371
 
 
 
92d0074
 
389e2c1
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
---
language: 
- sv-SE

license: apache-2.0
tags:
- automatic-speech-recognition
- robust-speech-event
datasets:
- mozilla-foundation/common_voice_8_0
metrics:
- wer
- cer
model-index:
- name: wav2vec2-large-xls-r-1b-Swedish
  results:
  - task: 
      type: automatic-speech-recognition  # Required. Example: automatic-speech-recognition
      name: Speech Recognition  # Optional. Example: Speech Recognition
    dataset:
      type: mozilla-foundation/common_voice_8_0  # Required. Example: common_voice. Use dataset id from https://hf.co/datasets
      name: Common Voice sv-SE # Required. Example: Common Voice zh-CN
      args: sv-SE       # Optional. Example: zh-CN
    metrics:
      - type: wer    # Required. Example: wer
        value: 14.04  # Required. Example: 20.90
        name: Test WER With LM   # Optional. Example: Test WER
        args: 
        - learning_rate: 7.5e-05
        - train_batch_size: 32
        - eval_batch_size: 8
        - seed: 42
        - gradient_accumulation_steps: 4
        - total_train_batch_size: 128
        - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
        - lr_scheduler_type: linear
        - lr_scheduler_warmup_steps: 1000
        - num_epochs: 50
        - mixed_precision_training: Native AMP    # Optional. Example for BLEU: max_order
      - type: cer    # Required. Example: wer
        value: 4.86  # Required. Example: 20.90
        name: Test CER  With LM   # Optional. Example: Test WER
        args: 
        - learning_rate: 7.5e-05
        - train_batch_size: 32
        - eval_batch_size: 8
        - seed: 42
        - gradient_accumulation_steps: 4
        - total_train_batch_size: 128
        - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
        - lr_scheduler_type: linear
        - lr_scheduler_warmup_steps: 1000
        - num_epochs: 50
        - mixed_precision_training: Native AMP
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2-large-xls-r-1b-Swedish

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the common_voice dataset.
It achieves the following results on the evaluation set:

**Without LM**
- Loss: 0.3370
- Wer: 18.44 
- Cer: 5.75

**With LM**
- Loss: 0.3370
- Wer: 14.04 
- Cer: 4.86

#### Evaluation Commands
1. To evaluate on `mozilla-foundation/common_voice_8_0` with split `test`

```bash
python eval.py --model_id kingabzpro/wav2vec2-large-xls-r-1b-Swedish --dataset mozilla-foundation/common_voice_8_0 --config sv-SE --split test
```

2. To evaluate on `speech-recognition-community-v2/dev_data`

```bash
python eval.py --model_id kingabzpro/wav2vec2-large-xls-r-1b-Swedish --dataset speech-recognition-community-v2/dev_data --config sv --split validation --chunk_length_s 5.0 --stride_length_s 1.0
```

### Inference With LM

```python
import torch
from datasets import load_dataset
from transformers import AutoModelForCTC, AutoProcessor
import torchaudio.functional as F
model_id = "kingabzpro/wav2vec2-large-xls-r-1b-Swedish"
sample_iter = iter(load_dataset("mozilla-foundation/common_voice_8_0", "sv-SE", split="test", streaming=True, use_auth_token=True))
sample = next(sample_iter)
resampled_audio = F.resample(torch.tensor(sample["audio"]["array"]), 48_000, 16_000).numpy()
model = AutoModelForCTC.from_pretrained(model_id)
processor = AutoProcessor.from_pretrained(model_id)
input_values = processor(resampled_audio, return_tensors="pt").input_values
with torch.no_grad():
    logits = model(input_values).logits
transcription = processor.batch_decode(logits.numpy()).text
```

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 7.5e-05
- train_batch_size: 64
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 50
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    | Cer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
| 3.1562        | 11.11 | 500  | 0.4830          | 0.3729 | 0.1169 |
| 0.5655        | 22.22 | 1000 | 0.3553          | 0.2381 | 0.0743 |
| 0.3376        | 33.33 | 1500 | 0.3359          | 0.2179 | 0.0696 |
| 0.2419        | 44.44 | 2000 | 0.3232          | 0.1844 | 0.0575 |


### Framework versions

- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0