kiranpantha's picture
End of training
10736ea verified
---
library_name: transformers
language:
- ne
license: mit
base_model: facebook/w2v-bert-2.0
tags:
- generated_from_trainer
datasets:
- kiranpantha/OpenSLR54-Balanced-Nepali
metrics:
- wer
model-index:
- name: Wave2Vec2-Bert2.0 - Kiran Pantha
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: kiranpantha/OpenSLR54-Balanced-Nepali
type: kiranpantha/OpenSLR54-Balanced-Nepali
args: 'config: ne, split: train,test'
metrics:
- name: Wer
type: wer
value: 0.45372112917023094
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Wave2Vec2-Bert2.0 - Kiran Pantha
This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the kiranpantha/OpenSLR54-Balanced-Nepali dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5146
- Wer: 0.4537
- Cer: 0.1137
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|:-------------:|:------:|:----:|:---------------:|:------:|:------:|
| 0.3129 | 0.24 | 300 | 0.5021 | 0.4484 | 0.1119 |
| 0.3868 | 0.48 | 600 | 0.5117 | 0.4686 | 0.1193 |
| 0.368 | 0.72 | 900 | 0.5399 | 0.4674 | 0.1291 |
| 0.3462 | 0.96 | 1200 | 0.4893 | 0.4506 | 0.1131 |
| 0.3009 | 1.2 | 1500 | 0.5081 | 0.4505 | 0.1134 |
| 0.2721 | 1.44 | 1800 | 0.5146 | 0.4681 | 0.1159 |
| 0.2499 | 1.6800 | 2100 | 0.5128 | 0.4549 | 0.1128 |
| 0.2366 | 1.92 | 2400 | 0.5146 | 0.4537 | 0.1137 |
### Framework versions
- Transformers 4.44.2
- Pytorch 2.4.1+cu121
- Datasets 3.0.1
- Tokenizers 0.19.1