Edit model card

dataset_infos_midm

This model is a fine-tuned version of KT-AI/midm-bitext-S-7B-inst-v1 on an unknown dataset.

Model description

Midm์€ KT๊ฐ€ ๊ฐœ๋ฐœํ•œ ์‚ฌ์ „ํ•™์Šต ํ•œ๊ตญ์–ด-์˜์–ด ์–ธ์–ด๋ชจ๋ธ ์ž…๋‹ˆ๋‹ค. ๋ฌธ์ž์—ด์„ ์ž…๋ ฅ์œผ๋กœ ํ•˜๋ฉฐ, ๋ฌธ์ž์—ด์„ ์ƒ์„ฑํ•ฉ๋‹ˆ๋‹ค. ํ•ด๋‹น ๋ชจ๋ธ(KT-AI/midm-bitext-S-7B-inst-v1)์„ ๋ฒ ์ด์Šค ๋ชจ๋ธ๋กœ ํ•˜์—ฌ ๋ฏธ์„ธํŠœ๋‹์„ ์ง„ํ–‰ํ•˜์˜€์Šต๋‹ˆ๋‹ค.

Midm is a pre-trained Korean-English language model developed by KT. It takes text as input and creates text. We fine-tuned the model based on KT-AI/midm-bitext-S-7B-inst-v1.

Intended uses & limitations

nsmc ๋ฐ์ดํ„ฐ์…‹์˜ ์‚ฌ์šฉ์ž๊ฐ€ ์ž…๋ ฅํ•œ ๋ฆฌ๋ทฐ ๋ฌธ์žฅ์„ ๋ถ„๋ฅ˜ํ•˜๋Š” ์—์ด์ „ํŠธ์ด๋‹ค. ์‚ฌ์šฉ์ž ๋ฆฌ๋ทฐ ๋ฌธ์žฅ์œผ๋กœ๋ถ€ํ„ฐ '๊ธ์ •' ๋˜๋Š” '๋ถ€์ •'์„ ํŒ๋‹จํ•ฉ๋‹ˆ๋‹ค.

This is an agent that classifies user-input review sentences from NSMC dataset. It determines whether the user review sentences are 'positive' or 'negative'.

Training and test data

Training ๋ฐ test ๋ฐ์ดํ„ฐ๋Š” nsmc ๋ฐ์ดํ„ฐ ์…‹์—์„œ ๋กœ๋”ฉํ•ด ์‚ฌ์šฉํ•ฉ๋‹ˆ๋‹ค. (elvaluation ๋ฐ์ดํ„ฐ๋Š” ์‚ฌ์šฉํ•˜์ง€ ์•Š์Šต๋‹ˆ๋‹ค.)

We load and use training and test data from the NSMC dataset. (We do not use an evaluation data.)

Training procedure

์‚ฌ์šฉ์ž์˜ ์˜ํ™” ๋ฆฌ๋ทฐ ๋ฌธ์žฅ์„ ์ž…๋ ฅ์œผ๋กœ ๋ฐ›์•„ ๋ฌธ์žฅ์„ '๊ธ์ •(1)' ๋˜๋Š” '๋ถ€์ •(0)'์œผ๋กœ ๋ถ„๋ฅ˜ํ•ฉ๋‹ˆ๋‹ค.

Accepts movie review sentences from the user as input and classifies the sentences as 'Positive (1)' or 'Negative (0)'.

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 2
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.03
  • training_steps: 300
  • mixed_precision_training: Native AMP

Training results

  • The following are the results considering incorrectly generated words(e.g., ์ •, ' ').

    • Binary Confusion Matrix

      TP TN
      PP 443 49
      PN 57 451
    • Accuracy: 0.894

  • The following are the results without considering incorrectly generated words as wrong(e.g., ์ •, ' ').

    • Binary Confusion Matrix

      TP TN
      PP 443 38
      PN 44 451
    • Accuracy: 0.916

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu118
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .

Model tree for kjh01/dataset_infos_midm

Finetuned
(11)
this model