metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- emotion
metrics:
- accuracy
- f1
model-index:
- name: distilbert-base-uncased-finetuned-emotion
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: emotion
type: emotion
args: default
metrics:
- name: Accuracy
type: accuracy
value: 0.931
- name: F1
type: f1
value: 0.9313235272564213
distilbert-base-uncased-finetuned-emotion
This model is a fine-tuned version of distilbert-base-uncased on the emotion dataset. It achieves the following results on the evaluation set:
- Loss: 0.1595
- Accuracy: 0.931
- F1: 0.9313
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
No log | 1.0 | 125 | 0.1873 | 0.924 | 0.9234 |
0.1992 | 2.0 | 250 | 0.1649 | 0.929 | 0.9293 |
0.1992 | 3.0 | 375 | 0.1595 | 0.931 | 0.9313 |
Framework versions
- Transformers 4.19.2
- Pytorch 1.11.0
- Datasets 2.2.3.dev0
- Tokenizers 0.12.1