llama2-13b-lora-alpaca-11-v1
This model is a fine-tuned version of meta-llama/Llama-2-13b-hf on the generator dataset. It achieves the following results on the evaluation set:
- Loss: 1.4780
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 2
- total_train_batch_size: 256
- total_eval_batch_size: 128
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.467 | 0.9938 | 80 | 1.4780 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.2
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 3
Model tree for klcsp/llama2-13b-lora-alpaca-11-v1
Base model
meta-llama/Llama-2-13b-hf