Edit model card

llama3.1-8b-gpt4o_100k_coding-lora

This model is a fine-tuned version of meta-llama/Meta-Llama-3-8B on the llama-duo/synth_coding_dataset_dedup dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2769

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
0.5385 1.0 270 1.2769

Framework versions

  • PEFT 0.13.0
  • Transformers 4.45.1
  • Pytorch 2.4.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for klcsp/llama3.1-8b-gpt4o_100k_coding-lora

Adapter
(533)
this model

Dataset used to train klcsp/llama3.1-8b-gpt4o_100k_coding-lora