ts_subcate / README.md
tangminhanh's picture
Duplicate from tangminhanh/ts_subcate
b6822a3 verified
|
raw
history blame
2.34 kB
metadata
license: mit
base_model: tangminhanh/ts_cate
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: ts_subcate
    results: []

ts_subcate

This model is a fine-tuned version of tangminhanh/ts_cate on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0084
  • Accuracy: 0.7013
  • F1: 0.7812
  • Precision: 0.8815
  • Recall: 0.7014

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 403 0.0261 0.0 0.0 0.0 0.0
0.0805 2.0 806 0.0174 0.3328 0.4904 0.9438 0.3313
0.0203 3.0 1209 0.0131 0.4702 0.6217 0.9229 0.4687
0.0138 4.0 1612 0.0111 0.5592 0.6939 0.9170 0.5581
0.0104 5.0 2015 0.0100 0.6297 0.7417 0.8998 0.6308
0.0104 6.0 2418 0.0091 0.6659 0.7628 0.8909 0.6669
0.0084 7.0 2821 0.0088 0.6815 0.7712 0.8867 0.6823
0.0072 8.0 3224 0.0086 0.6889 0.7764 0.8874 0.6900
0.0063 9.0 3627 0.0084 0.6982 0.7803 0.8832 0.6989
0.006 10.0 4030 0.0084 0.7013 0.7812 0.8815 0.7014

Framework versions

  • Transformers 4.42.4
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1