MonarchLake-7B

Description

This repo contains GGUF format model files for MonarchLake-7B.

Files Provided

Name Quant Bits File Size Remark
monarchlake-7b.IQ3_XXS.gguf IQ3_XXS 3 3.02 GB 3.06 bpw quantization
monarchlake-7b.IQ3_S.gguf IQ3_S 3 3.18 GB 3.44 bpw quantization
monarchlake-7b.IQ3_M.gguf IQ3_M 3 3.28 GB 3.66 bpw quantization mix
monarchlake-7b.Q4_0.gguf Q4_0 4 4.11 GB 3.56G, +0.2166 ppl
monarchlake-7b.IQ4_NL.gguf IQ4_NL 4 4.16 GB 4.25 bpw non-linear quantization
monarchlake-7b.Q4_K_M.gguf Q4_K_M 4 4.37 GB 3.80G, +0.0532 ppl
monarchlake-7b.Q5_K_M.gguf Q5_K_M 5 5.13 GB 4.45G, +0.0122 ppl
monarchlake-7b.Q6_K.gguf Q6_K 6 5.94 GB 5.15G, +0.0008 ppl
monarchlake-7b.Q8_0.gguf Q8_0 8 7.70 GB 6.70G, +0.0004 ppl

Parameters

path type architecture rope_theta sliding_win max_pos_embed
macadeliccc/MonarchLake-7B mistral MistralForCausalLM 10000.0 4096 32768

Benchmarks

Original Model Card

MonarchLake-7B

image/webp

This model equips AlphaMonarch-7B with a strong base of emotional intelligence.

Merge Method

This model was merged using the SLERP merge method.

Models Merged

The following models were included in the merge:

Configuration

The following YAML configuration was used to produce this model:

slices:
  - sources:
      - model: mlabonne/AlphaMonarch-7B
        layer_range: [0, 32]
      - model: macadeliccc/WestLake-7b-v2-laser-truthy-dpo
        layer_range: [0, 32]
merge_method: slerp
base_model: mlabonne/AlphaMonarch-7B
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16

Downloads last month
23
GGUF
Model size
7.24B params
Architecture
llama

3-bit

4-bit

5-bit

6-bit

8-bit

Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for koesn/MonarchLake-7B-GGUF

Quantized
(9)
this model