SetFit with sentence-transformers/paraphrase-mpnet-base-v2
This is a SetFit model trained on the konsman/setfit-messages-optimized dataset that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-mpnet-base-v2 as the Sentence Transformer embedding model. A MultiOutputClassifier instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: sentence-transformers/paraphrase-mpnet-base-v2
- Classification head: a MultiOutputClassifier instance
- Maximum Sequence Length: 512 tokens
- Training Dataset: konsman/setfit-messages-optimized
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Evaluation
Metrics
Label | F1 | Accuracy |
---|---|---|
all | 0.6897 | 0.3404 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("konsman/setfit-messages-multilabel-example")
# Run inference
preds = model("Sorry forgot to say that unfortunately after this problem that made me let sports and with the anxiety meds . I am now 83 kg")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 5 | 110.2344 | 469 |
Training Hyperparameters
- batch_size: (8, 8)
- num_epochs: (2, 2)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 5
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0031 | 1 | 0.3209 | - |
0.1562 | 50 | 0.1823 | - |
0.3125 | 100 | 0.1003 | - |
0.4688 | 150 | 0.1774 | - |
0.625 | 200 | 0.0832 | - |
0.7812 | 250 | 0.0828 | - |
0.9375 | 300 | 0.0721 | - |
1.0938 | 350 | 0.1331 | - |
1.25 | 400 | 0.1215 | - |
1.4062 | 450 | 0.1494 | - |
1.5625 | 500 | 0.0444 | - |
1.7188 | 550 | 0.0688 | - |
1.875 | 600 | 0.1033 | - |
0.0125 | 1 | 0.0508 | - |
0.625 | 50 | 0.0793 | - |
1.25 | 100 | 0.081 | - |
1.875 | 150 | 0.1367 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.2
- Sentence Transformers: 2.2.2
- Transformers: 4.35.2
- PyTorch: 2.1.0+cu121
- Datasets: 2.16.1
- Tokenizers: 0.15.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 9
Inference API (serverless) has been turned off for this model.
Model tree for konsman/setfit-messages-multilabel-example
Evaluation results
- F1 on konsman/setfit-messages-optimizedtest set self-reported0.690
- Accuracy on konsman/setfit-messages-optimizedtest set self-reported0.340