segformer-finetuned-Maize-10k-steps-sem
This model is a fine-tuned version of nvidia/mit-b5 on the koushikn/Maize_sem_seg dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0756
- Mean Iou: 0.9172
- Mean Accuracy: 0.9711
- Overall Accuracy: 0.9804
- Accuracy Background: 0.9834
- Accuracy Maize: 0.9588
- Iou Background: 0.9779
- Iou Maize: 0.8566
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 1337
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: polynomial
- training_steps: 10000
Training results
Training Loss |
Epoch |
Step |
Validation Loss |
Mean Iou |
Mean Accuracy |
Overall Accuracy |
Accuracy Background |
Accuracy Maize |
Iou Background |
Iou Maize |
0.0529 |
1.0 |
678 |
69.3785 |
0.4391 |
0.5 |
0.8781 |
1.0 |
0.0 |
0.8781 |
0.0 |
0.3755 |
2.0 |
1356 |
0.9455 |
0.4391 |
0.5 |
0.8781 |
1.0 |
0.0 |
0.8781 |
0.0 |
0.0603 |
3.0 |
2034 |
0.0920 |
0.8356 |
0.8602 |
0.9641 |
0.9976 |
0.7227 |
0.9607 |
0.7106 |
0.0341 |
4.0 |
2712 |
24.6203 |
0.4391 |
0.5 |
0.8781 |
1.0 |
0.0 |
0.8781 |
0.0 |
0.0332 |
5.0 |
3390 |
101.5635 |
0.4391 |
0.5 |
0.8781 |
1.0 |
0.0 |
0.8781 |
0.0 |
0.0331 |
6.0 |
4068 |
9.6824 |
0.4391 |
0.5 |
0.8781 |
1.0 |
0.0 |
0.8781 |
0.0 |
0.0302 |
7.0 |
4746 |
260.7923 |
0.4391 |
0.5 |
0.8781 |
1.0 |
0.0 |
0.8781 |
0.0 |
0.0305 |
8.0 |
5424 |
172.8153 |
0.4391 |
0.5 |
0.8781 |
1.0 |
0.0 |
0.8781 |
0.0 |
0.0313 |
9.0 |
6102 |
304.2714 |
0.4391 |
0.5 |
0.8781 |
1.0 |
0.0 |
0.8781 |
0.0 |
0.0301 |
10.0 |
6780 |
547.2355 |
0.4391 |
0.5 |
0.8781 |
1.0 |
0.0 |
0.8781 |
0.0 |
0.03 |
11.0 |
7458 |
224.2607 |
0.4391 |
0.5 |
0.8781 |
1.0 |
0.0 |
0.8781 |
0.0 |
0.0285 |
12.0 |
8136 |
116.3474 |
0.4391 |
0.5 |
0.8781 |
1.0 |
0.0 |
0.8781 |
0.0 |
0.0284 |
13.0 |
8814 |
96.8429 |
0.4391 |
0.5 |
0.8781 |
1.0 |
0.0 |
0.8781 |
0.0 |
0.0281 |
14.0 |
9492 |
54.2593 |
0.4391 |
0.5 |
0.8781 |
1.0 |
0.0 |
0.8781 |
0.0 |
0.028 |
14.75 |
10000 |
0.0756 |
0.9172 |
0.9711 |
0.9804 |
0.9834 |
0.9588 |
0.9779 |
0.8566 |
Framework versions
- Transformers 4.21.0.dev0
- Pytorch 1.10.0+cu102
- Datasets 2.3.2
- Tokenizers 0.12.1