Edit model card

kpriyanshu256/whisper-large-v2-as-600-32-1e-05-bn-Assamese

This model is a fine-tuned version of kpriyanshu256/whisper-large-v2-as-600-32-1e-05-bn on the Common Voice 11.0 and the FLEURS datasets. It achieves the following results on the evaluation set:

  • Loss: 0.2486
  • Wer: 17.5600

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 50
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss Wer
0.1273 0.1 100 0.1737 20.8988
0.0811 0.2 200 0.1739 19.0038
0.0638 0.3 300 0.1823 18.4804
0.0404 1.05 400 0.1893 17.1810
0.0316 1.15 500 0.2067 17.0186
0.027 1.25 600 0.2081 17.7405
0.025 2.01 700 0.2213 17.7585
0.0213 2.11 800 0.2237 17.8488
0.0176 2.21 900 0.2390 16.7479
0.0184 2.31 1000 0.2486 17.5600

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Datasets used to train kpriyanshu256/whisper-large-v2-as-1000-32-1e-05-bn-multi

Evaluation results