kpriyanshu256's picture
Librarian Bot: Add base_model information to model (#1)
203bdc5
metadata
language:
  - as
license: apache-2.0
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_11_0
metrics:
  - wer
base_model: kpriyanshu256/whisper-small-as-500-64-1e-05-bn
model-index:
  - name: openai/whisper-small-Assamese
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: Common Voice 11.0
          type: mozilla-foundation/common_voice_11_0
          config: as
          split: test
          args: as
        metrics:
          - type: wer
            value: 32.71972568128497
            name: Wer

openai/whisper-small-Assamese

This model is a fine-tuned version of kpriyanshu256/whisper-small-as-500-64-1e-05-bn on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4463
  • Wer: 32.7197

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 40
  • training_steps: 250
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2654 3.04 50 0.2905 33.8026
0.0643 7.04 100 0.3321 31.7813
0.0089 11.03 150 0.4060 32.0159
0.0022 15.02 200 0.4378 32.5393
0.0016 19.01 250 0.4463 32.7197

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.11.0
  • Datasets 2.1.0
  • Tokenizers 0.12.1