|
--- |
|
license: apache-2.0 |
|
base_model: facebook/wav2vec2-xls-r-300m |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- common_voice_13_0 |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: wav2vec2-large-xls-r-300m-korean |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: common_voice_13_0 |
|
type: common_voice_13_0 |
|
config: ko |
|
split: test |
|
args: ko |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 0.5931520644511581 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# wav2vec2-large-xls-r-300m-korean |
|
|
|
This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_13_0 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.4687 |
|
- Wer: 0.5932 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0003 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 300 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:------:|:-----:|:---------------:|:------:| |
|
| 20.8922 | 6.25 | 400 | 4.6827 | 0.9990 | |
|
| 4.0513 | 12.5 | 800 | 2.3657 | 0.9204 | |
|
| 1.5386 | 18.75 | 1200 | 1.2355 | 0.7392 | |
|
| 0.7429 | 25.0 | 1600 | 1.1179 | 0.6636 | |
|
| 0.3746 | 31.25 | 2000 | 1.0465 | 0.6314 | |
|
| 0.2407 | 37.5 | 2400 | 1.1492 | 0.6596 | |
|
| 0.1966 | 43.75 | 2800 | 1.1291 | 0.6344 | |
|
| 0.1697 | 50.0 | 3200 | 1.1897 | 0.6395 | |
|
| 0.1533 | 56.25 | 3600 | 1.2202 | 0.6193 | |
|
| 0.129 | 62.5 | 4000 | 1.2106 | 0.6516 | |
|
| 0.1097 | 68.75 | 4400 | 1.1662 | 0.6254 | |
|
| 0.102 | 75.0 | 4800 | 1.2086 | 0.6133 | |
|
| 0.0918 | 81.25 | 5200 | 1.2295 | 0.6485 | |
|
| 0.0806 | 87.5 | 5600 | 1.2861 | 0.6123 | |
|
| 0.0738 | 93.75 | 6000 | 1.2436 | 0.6093 | |
|
| 0.0697 | 100.0 | 6400 | 1.3496 | 0.6626 | |
|
| 0.0667 | 106.25 | 6800 | 1.2364 | 0.6133 | |
|
| 0.0591 | 112.5 | 7200 | 1.2689 | 0.6062 | |
|
| 0.054 | 118.75 | 7600 | 1.2886 | 0.6183 | |
|
| 0.0523 | 125.0 | 8000 | 1.3328 | 0.6445 | |
|
| 0.0542 | 131.25 | 8400 | 1.4019 | 0.6133 | |
|
| 0.045 | 137.5 | 8800 | 1.3426 | 0.6042 | |
|
| 0.0425 | 143.75 | 9200 | 1.3042 | 0.6032 | |
|
| 0.0378 | 150.0 | 9600 | 1.3638 | 0.6224 | |
|
| 0.0354 | 156.25 | 10000 | 1.3397 | 0.6294 | |
|
| 0.0282 | 162.5 | 10400 | 1.3939 | 0.6173 | |
|
| 0.0288 | 168.75 | 10800 | 1.3674 | 0.6475 | |
|
| 0.0278 | 175.0 | 11200 | 1.3636 | 0.6324 | |
|
| 0.0239 | 181.25 | 11600 | 1.4101 | 0.6405 | |
|
| 0.0238 | 187.5 | 12000 | 1.4528 | 0.6163 | |
|
| 0.0214 | 193.75 | 12400 | 1.4458 | 0.6093 | |
|
| 0.0194 | 200.0 | 12800 | 1.3920 | 0.6304 | |
|
| 0.0168 | 206.25 | 13200 | 1.4277 | 0.6193 | |
|
| 0.0168 | 212.5 | 13600 | 1.3959 | 0.6203 | |
|
| 0.0154 | 218.75 | 14000 | 1.4043 | 0.6133 | |
|
| 0.0144 | 225.0 | 14400 | 1.4508 | 0.6193 | |
|
| 0.0134 | 231.25 | 14800 | 1.4309 | 0.6224 | |
|
| 0.0109 | 237.5 | 15200 | 1.4301 | 0.6123 | |
|
| 0.0107 | 243.75 | 15600 | 1.4373 | 0.6002 | |
|
| 0.0098 | 250.0 | 16000 | 1.4147 | 0.6113 | |
|
| 0.0095 | 256.25 | 16400 | 1.4585 | 0.6193 | |
|
| 0.009 | 262.5 | 16800 | 1.4424 | 0.6203 | |
|
| 0.0079 | 268.75 | 17200 | 1.5019 | 0.6193 | |
|
| 0.0066 | 275.0 | 17600 | 1.4835 | 0.5932 | |
|
| 0.0059 | 281.25 | 18000 | 1.4749 | 0.5992 | |
|
| 0.0057 | 287.5 | 18400 | 1.4897 | 0.6002 | |
|
| 0.0053 | 293.75 | 18800 | 1.4667 | 0.5901 | |
|
| 0.0048 | 300.0 | 19200 | 1.4687 | 0.5932 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.0.dev0 |
|
- Pytorch 1.12.1 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.14.0 |
|
|