Edit model card

review_classification_bert_base_jp_v3_ratio1_5_2label_add_dropout-epoch15_v4

This model is a fine-tuned version of cl-tohoku/bert-base-japanese-v3 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2584
  • Accuracy: 0.8235

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 156 0.3394 0.8460
No log 2.0 312 0.3416 0.8338
No log 3.0 468 0.3775 0.8338
0.2942 4.0 624 0.4964 0.8319
0.2942 5.0 780 0.6834 0.8263
0.2942 6.0 936 0.8556 0.8376
0.0772 7.0 1092 0.9792 0.8197
0.0772 8.0 1248 1.0804 0.8188
0.0772 9.0 1404 1.1236 0.8244
0.0082 10.0 1560 1.1708 0.8254
0.0082 11.0 1716 1.1788 0.8272
0.0082 12.0 1872 1.1949 0.8310
0.002 13.0 2028 1.2106 0.8282
0.002 14.0 2184 1.2539 0.8235
0.002 15.0 2340 1.2584 0.8235

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
3
Safetensors
Model size
111M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for kt220/review_classification_bert_base_jp_v3_ratio1_5_2label_add_dropout-epoch15_v4

Finetuned
(32)
this model