YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

松尾研大規模言語モデル講座2024のコンペ用の提出モデル作成の一環として作成・公開しています。


license: apache-2.0 datasets: - elyza/elyza-tasks-100-TV_0.jsonl language: - ja base_model: - llm-jp/llm-jp-3-13b

Model Card for Model ID

This modelcard aims to be a base template for new models. It has been generated using this raw template.

Model Details

Model Description

  • Developed by: ktabuchi
  • Model type: [More Information Needed]
  • Language(s) (NLP): [More Information Needed]
  • License: [More Information Needed]
  • Finetuned from model [optional]: [More Information Needed]

Model Sources [optional]

  • Repository: ktabuchi

Uses

For Academic lessons of Matsuo-LLM Lectures

Direct Use

Out-of-Scope Use

Bias, Risks, and Limitations

Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

Training Details

Training Data

https://liat-aip.sakura.ne.jp/wp/llmのための日本語インストラクションデータ作成/llmのための日本語インストラクションデータ-公開/

[More Information Needed]

Training Procedure

Training Hyperparameters

  • Training regime: [More Information Needed]

Evaluation

Testing Data, Factors & Metrics

Testing Data

elyza-tasks-100-TV_0.jsonl

[More Information Needed]

Factors

[More Information Needed]

Metrics

[More Information Needed]

Results

[More Information Needed]

Summary

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type:
  • Hours used: 10
  • Cloud Provider: Google Colab
  • Compute Region: A100
  • Carbon Emitted: [More Information Needed]

Model Architecture and Objective

For Academic Use

Compute Infrastructure

[More Information Needed]

Hardware

[More Information Needed]

Software

[More Information Needed]

BibTeX:

[More Information Needed]

APA:

[More Information Needed]

[More Information Needed]

Model Card Contact

[More Information Needed]


license: apache-2.0 datasets: - elyza/elyza-tasks-100-TV_0.jsonl language: - ja base_model: - llm-jp/llm-jp-3-13b

Model Card for Model ID

This modelcard aims to be a base template for new models. It has been generated using this raw template.

Model Details

Model Description

  • Developed by: ktabuchi
  • Model type: [More Information Needed]
  • Language(s) (NLP): [More Information Needed]
  • License: [More Information Needed]
  • Finetuned from model [optional]: [More Information Needed]

Model Sources [optional]

  • Repository: ktabuchi

Uses

For Academic lessons of Matsuo-LLM Lectures

Direct Use

Out-of-Scope Use

Bias, Risks, and Limitations

Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

Training Details

Training Data

https://liat-aip.sakura.ne.jp/wp/llmのための日本語インストラクションデータ作成/llmのための日本語インストラクションデータ-公開/

[More Information Needed]

Training Procedure

Training Hyperparameters

  • Training regime: [More Information Needed]

Evaluation

Testing Data, Factors & Metrics

Testing Data

elyza-tasks-100-TV_0.jsonl

[More Information Needed]

Factors

[More Information Needed]

Metrics

[More Information Needed]

Results

[More Information Needed]

Summary

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type:
  • Hours used: 10
  • Cloud Provider: Google Colab
  • Compute Region: A100
  • Carbon Emitted: [More Information Needed]

Model Architecture and Objective

For Academic Use

Compute Infrastructure

[More Information Needed]

Hardware

[More Information Needed]

Software

[More Information Needed]

BibTeX:

[More Information Needed]

APA:

[More Information Needed]

[More Information Needed]

Model Card Contact

[More Information Needed]

必要なライブラリをインストール

%%capture !pip install unsloth !pip uninstall unsloth -y && pip install --upgrade --no-cache-dir "unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git" !pip install -U torch !pip install -U peft

必要なライブラリを読み込み

from unsloth import FastLanguageModel from peft import PeftModel import torch import json from tqdm import tqdm import re

ベースとなるモデルと学習したLoRAのアダプタ(Hugging FaceのIDを指定)。

model_id = "llm-jp/llm-jp-3-13b" adapter_id = "ktabuchi/llm-jp-3-13b-ft_lora"

Hugging Face Token を指定。

下記の URL から Hugging Face Token を取得できますので下記の HF_TOKEN に入れてください。

https://huggingface.co/settings/tokens

HF_TOKEN = "" #@param {type:"string"}

unslothのFastLanguageModelで元のモデルをロード。

dtype = None # Noneにしておけば自動で設定 load_in_4bit = True # 今回は13Bモデルを扱うためTrue

model, tokenizer = FastLanguageModel.from_pretrained( model_name=model_id, dtype=dtype, load_in_4bit=load_in_4bit, trust_remote_code=True, )

元のモデルにLoRAのアダプタを統合。

model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN)

タスクとなるデータの読み込み。

事前にデータをアップロードしてください。

datasets = [] with open("./elyza-tasks-100-TV_0.jsonl", "r") as f: item = "" for line in f: line = line.strip() item += line if item.endswith("}"): datasets.append(json.loads(item)) item = ""

モデルを用いてタスクの推論。

推論するためにモデルのモードを変更

FastLanguageModel.for_inference(model)

results = [] for dt in tqdm(datasets): input = dt["input"]

prompt = f"""### 指示\n{input}\n### 回答\n"""

inputs = tokenizer([prompt], return_tensors = "pt").to(model.device)

outputs = model.generate(**inputs, max_new_tokens = 512, use_cache = True, do_sample=False, repetition_penalty=1.2) prediction = tokenizer.decode(outputs[0], skip_special_tokens=True).split('\n### 回答')[-1]

results.append({"task_id": dt["task_id"], "input": input, "output": prediction})

結果をjsonlで保存。

ここではadapter_idを元にファイル名を決定しているが、ファイル名は任意で問題なし。

json_file_id = re.sub(".*/", "", adapter_id) with open(f"/content/{json_file_id}_output.jsonl", 'w', encoding='utf-8') as f: for result in results: json.dump(result, f, ensure_ascii=False) f.write('\n')

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model's library. Check the docs .