File size: 1,964 Bytes
6a5edc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
"""Caduceus config for Hugging Face.

"""

from typing import Optional, Union

from transformers import PretrainedConfig


class CaduceusConfig(PretrainedConfig):
    """Config that extends the original MambaConfig with params relevant to bi-directionality and RC equivariance."""
    model_type = "caduceus"

    def __init__(
            self,
            # From original MambaConfig
            d_model: int = 2560,
            n_layer: int = 64,
            vocab_size: int = 50277,
            ssm_cfg: Optional[dict] = None,
            rms_norm: bool = True,
            residual_in_fp32: bool = True,
            fused_add_norm: bool = True,
            pad_vocab_size_multiple: int = 8,

            # Not in original MambaConfig, but default arg in create_block in mamba_ssm repo; used in layer norm
            norm_epsilon: float = 1e-5,

            # Used in init_weights
            initializer_cfg: Optional[dict] = None,

            # Caduceus-specific params
            bidirectional: bool = True,
            bidirectional_strategy: Union[str, None] = "add",
            bidirectional_weight_tie: bool = True,
            rcps: bool = False,
            complement_map: Optional[dict] = None,  # used for RCPSEmbedding / RCPSLMHead
            **kwargs,
    ):
        super().__init__(**kwargs)
        self.d_model = d_model
        self.n_layer = n_layer
        self.vocab_size = vocab_size
        self.ssm_cfg = ssm_cfg
        self.rms_norm = rms_norm
        self.residual_in_fp32 = residual_in_fp32
        self.fused_add_norm = fused_add_norm
        self.pad_vocab_size_multiple = pad_vocab_size_multiple
        self.norm_epsilon = norm_epsilon
        self.initializer_cfg = initializer_cfg
        self.bidirectional = bidirectional
        self.bidirectional_strategy = bidirectional_strategy
        self.bidirectional_weight_tie = bidirectional_weight_tie
        self.rcps = rcps
        self.complement_map = complement_map