deberta-large-ReqORNot
This model is a fine-tuned version of microsoft/deberta-v3-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5297
- Accuracy: 0.9135
- Weighted precision: 0.9135
- Weighted recall: 0.9135
- Weighted f1: 0.9134
- Macro precision: 0.9135
- Macro recall: 0.9128
- Macro f1: 0.9131
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 3
- eval_batch_size: 3
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted precision | Weighted recall | Weighted f1 | Macro precision | Macro recall | Macro f1 |
---|---|---|---|---|---|---|---|---|---|---|
0.4826 | 1.0 | 1896 | 0.4286 | 0.9020 | 0.9020 | 0.9020 | 0.9019 | 0.9018 | 0.9014 | 0.9016 |
0.3429 | 2.0 | 3792 | 0.4274 | 0.9077 | 0.9091 | 0.9077 | 0.9078 | 0.9076 | 0.9089 | 0.9076 |
0.1299 | 3.0 | 5688 | 0.5297 | 0.9135 | 0.9135 | 0.9135 | 0.9134 | 0.9135 | 0.9128 | 0.9131 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 9
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for kwang123/deberta-large-ReqORNot
Base model
microsoft/deberta-v3-large