metadata
language:
- ko
datasets:
- kyujinpy/KOR-Orca-Platypus-kiwi
library_name: transformers
pipeline_tag: text-generation
license: cc-by-nc-sa-4.0
Ko-PlatYi-6B-kiwi
Model Details
Model Developers Kyujin Han (kyujinpy)
Input Models input text only.
Output Models generate text only.
Model Architecture
Ko-PlatYi-6B-kiwi is an auto-regressive language model based on the Yi-34B transformer architecture.
Blog Link
Blog: [Coming soon...]
Github: [Coming soon...]
Base Model
beomi/Yi-Ko-6B
Training Dataset
kyujinpy/KOR-Orca-Platypus-kiwi.
Model Benchmark
Open leaderboard
- Follow up as link.
Model | Average | ARC | HellaSwag | MMLU | TruthfulQA | CommonGen-V2 |
---|---|---|---|---|---|---|
Ko-PlatYi-6B-kiwi | NaN | NaN | NaN | NaN | NaN | NaN |
Ko-PlatYi-6B-gu | NaN | NaN | NaN | NaN | NaN | NaN |
Ko-PlatYi-6B | NaN | NaN | NaN | NaN | NaN | NaN |
Yi-Ko-6B | 48.79 | 41.04 | 53.39 | 46.28 | 41.64 | 61.63 |
Implementation Code
### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
repo = "kyujinpy/Ko-PlatYi-6B-kiwi"
OpenOrca = AutoModelForCausalLM.from_pretrained(
repo,
return_dict=True,
torch_dtype=torch.float16,
device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)