File size: 1,802 Bytes
a92f959 f6b4655 d8ab4cb f6b4655 a92f959 f6b4655 d8ab4cb f6b4655 d8ab4cb f6b4655 d8ab4cb f6b4655 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
---
language:
- ko
datasets:
- kyujinpy/OpenOrca-ko-v3
library_name: transformers
pipeline_tag: text-generation
license: cc-by-nc-sa-4.0
---
**(주)미디어그룹사람과숲과 (주)마커의 LLM 연구 컨소시엄에서 개발된 모델입니다**
**The license is `cc-by-nc-sa-4.0`.**
# **🐳Korean-OpenOrca-13B-v2🐳**
![img](./Korean-OpenOrca.png)
## Model Details
**Model Developers** Kyujin Han (kyujinpy)
**Model Architecture**
Korean-OpenOrca-13B is an auto-regressive language model based on the LLaMA2 transformer architecture.
**Repo Link**
Github Korean-OpenOrca: [🐳Korean-OpenOrca🐳](https://github.com/Marker-Inc-Korea/Korean-OpenOrca)
**Base Model** [hyunseoki/ko-en-llama2-13b](https://huggingface.co/hyunseoki/ko-en-llama2-13b)
**Training Dataset**
I use [OpenOrca-ko-v3](https://huggingface.co/datasets/kyujinpy/OpenOrca-ko-v3).
Using DeepL, translate about [OpenOrca](https://huggingface.co/datasets/Open-Orca/OpenOrca).
I use A100 GPU 40GB and COLAB, when trianing.
# Model comparisons
| Model | Average |Ko-ARC | Ko-HellaSwag | Ko-MMLU | Ko-TruthfulQA | Ko-CommonGen V2 |
| --- | --- | --- | --- | --- | --- | --- |
| [Korean-OpenOrca-13B🐳] | 48.79 | 43.09 | 54.13 | 40.24 | 45.22 | 61.28 |
| [Korean-OpenOrca-13B-v2🐳] | 48.17 | 43.17 | 54.51 | 42.90 | 41.82 | 58.44 |
| Korean-OpenOrca-13B-v3🐳 | 48.86 | 43.77 | 54.30 | 41.79 | 43.85 | 60.57 |
# Implementation Code
```python
### KO-Platypus
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
repo = "kyujinpy/Korean-OpenOrca-13B-v3"
OpenOrca = AutoModelForCausalLM.from_pretrained(
repo,
return_dict=True,
torch_dtype=torch.float16,
device_map='auto'
)
OpenOrca_tokenizer = AutoTokenizer.from_pretrained(repo)
```
--- |