|
--- |
|
license: bigscience-openrail-m |
|
datasets: |
|
- laion/Anh |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
tags: |
|
- pytorch |
|
- casual-lm |
|
- multilingual |
|
- instruct |
|
- bloomz |
|
--- |
|
|
|
### Model description |
|
|
|
This model is [`bloomz-7b1-mt`](https://huggingface.co/bigscience/bloomz-7b1-mt) model finetuned on instruct dataset `cross_lingual.jsonl` from [`laion/Anh`](https://huggingface.co/datasets/laion/Anh). |
|
|
|
|
|
### How to use |
|
|
|
anh-bloomz-7b1-mt-cross-lingual model can be loaded and used via the following code: |
|
|
|
```python |
|
import re |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_name = "laion/anh-bloomz-7b1-mt-cross-lingual" |
|
model = AutoModelForCausalLM.from_pretrained(model_name) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
whitespace_tokens_map = {'\n': '<n>', ' ': '<w>'} |
|
text = "User: Apakah kita akan bisa menyembuhkan penyakit kanker? Jawab dalam bahasa China.\n" |
|
for k, v in whitespace_tokens_map.items(): |
|
text = text.replace(k, v) |
|
inputs = tokenizer(text, return_tensors="pt") |
|
tokens = model.generate(**inputs, max_new_tokens=200, do_sample=True, top_k=40, top_p=0.9, temperature=0.2, |
|
repetition_penalty=1.2,num_return_sequences=1) |
|
output = tokenizer.decode(tokens[0], skip_special_tokens=True) |
|
for v in whitespace_tokens_map.values(): |
|
output = re.sub(rf"{v}\s+(\S+)", rf"{v}\1", output) |
|
for k, v in whitespace_tokens_map.items(): |
|
output = output.replace(v, k) |
|
``` |