|
--- |
|
language: |
|
- en |
|
thumbnail: "https://s3.amazonaws.com/moonup/production/uploads/1663756797814-62bd5f951e22ec84279820e8.png" |
|
tags: |
|
- stable-diffusion |
|
- stable-diffusion-diffusers |
|
- text-to-image |
|
datasets: |
|
- lambdalabs/pokemon-blip-captions |
|
--- |
|
|
|
__Stable Diffusion fine tuned on Pokémon by [Lambda Labs](https://lambdalabs.com/).__ |
|
|
|
Put in a text prompt and generate your own Pokémon character, no "prompt engineering" required! |
|
|
|
If you want to find out how to train your own Stable Diffusion variants, see this [example](https://github.com/LambdaLabsML/examples/tree/main/stable-diffusion-finetuning) from Lambda Labs. |
|
|
|
|
|
![image.png](https://s3.amazonaws.com/moonup/production/uploads/1663756797814-62bd5f951e22ec84279820e8.png) |
|
|
|
> Girl with a pearl earring, Cute Obama creature, Donald Trump, Boris Johnson, Totoro, Hello Kitty |
|
|
|
## Usage |
|
|
|
```bash |
|
!pip install diffusers==0.3.0 |
|
!pip install transformers scipy ftfy |
|
``` |
|
|
|
```python |
|
import torch |
|
from diffusers import StableDiffusionPipeline |
|
from torch import autocast |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained("lambdalabs/sd-pokemon-diffusers", torch_dtype=torch.float16) |
|
pipe = pipe.to("cuda") |
|
|
|
prompt = "Yoda" |
|
scale = 10 |
|
n_samples = 4 |
|
|
|
# Sometimes the nsfw checker is confused by the Pokémon images, you can disable |
|
# it at your own risk here |
|
disable_safety = False |
|
|
|
if disable_safety: |
|
def null_safety(images, **kwargs): |
|
return images, False |
|
pipe.safety_checker = null_safety |
|
|
|
with autocast("cuda"): |
|
images = pipe(n_samples*[prompt], guidance_scale=scale).images |
|
|
|
for idx, im in enumerate(images): |
|
im.save(f"{idx:06}.png") |
|
``` |
|
|
|
## Model description |
|
|
|
Trained on [BLIP captioned Pokémon images](https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions) using 2xA6000 GPUs on [Lambda GPU Cloud](https://lambdalabs.com/service/gpu-cloud) for around 15,000 step (about 6 hours, at a cost of about $10). |
|
|
|
## Links |
|
|
|
- [Lambda Diffusers](https://github.com/LambdaLabsML/lambda-diffusers) |
|
- [Captioned Pokémon dataset](https://huggingface.co/datasets/lambdalabs/pokemon-blip-captions) |
|
- [Model weights in Diffusers format](https://huggingface.co/lambdalabs/sd-pokemon-diffusers) |
|
- [Original model weights](https://huggingface.co/justinpinkney/pokemon-stable-diffusion) |
|
- [Training code](https://github.com/justinpinkney/stable-diffusion) |
|
|
|
Trained by [Justin Pinkney](justinpinkney.com) ([@Buntworthy](https://twitter.com/Buntworthy)) at [Lambda Labs](https://lambdalabs.com/). |