license: apache-2.0
datasets:
- lambdasec/cve-single-line-fixes
- lambdasec/gh-top-1000-projects-vulns
language:
- code
tags:
- code
programming_language:
- Java
- JavaScript
- Python
inference: false
widget:
- text: 'def print_hello_world():'
example_title: Hello world
group: Python
model-index:
- name: SantaFixer
results:
- task:
type: text-generation
dataset:
type: lambdasec/gh-top-1000-projects-vulns
name: GH Top 1000 Projects Vulnerabilities
metrics:
- name: pass@10 (Java)
type: pass@10
value: 0.1
verified: false
- name: pass@10 (Python)
type: pass@10
value: 0.2
verified: false
- name: pass@10 (JavaScript)
type: pass@10
value: 0.3
verified: false
Model Card for SantaFixer
This is a LLM for code that is focussed on generating bug fixes using infilling.
Model Details
Model Description
- Developed by: codelion
- Model type: GPT-2
- Finetuned from model: bigcode/santacoder
Model Sources [optional]
- Repository: [More Information Needed]
- Paper [optional]: [More Information Needed]
- Demo [optional]: [More Information Needed]
Uses
Direct Use
[More Information Needed]
Downstream Use [optional]
[More Information Needed]
Out-of-Scope Use
[More Information Needed]
Bias, Risks, and Limitations
[More Information Needed]
Recommendations
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
How to Get Started with the Model
Use the code below to get started with the model.
[More Information Needed]
Training Details
Training Data
[More Information Needed]
Training Procedure
Preprocessing [optional]
[More Information Needed]
Training Hyperparameters
- Training regime: [More Information Needed]
Speeds, Sizes, Times [optional]
[More Information Needed]
Evaluation
Testing Data, Factors & Metrics
Testing Data
[More Information Needed]
Factors
[More Information Needed]
Metrics
[More Information Needed]
Results
[More Information Needed]
Summary
Model Examination [optional]
[More Information Needed]
Environmental Impact
Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).
- Hardware Type: [More Information Needed]
- Hours used: [More Information Needed]
- Cloud Provider: [More Information Needed]
- Compute Region: [More Information Needed]
- Carbon Emitted: [More Information Needed]
Technical Specifications [optional]
Model Architecture and Objective
[More Information Needed]
Compute Infrastructure
[More Information Needed]
Hardware
[More Information Needed]
Software
[More Information Needed]
Citation [optional]
BibTeX:
[More Information Needed]
APA:
[More Information Needed]
Glossary [optional]
[More Information Needed]
More Information [optional]
[More Information Needed]
Model Card Authors [optional]
[More Information Needed]
Model Card Contact
[More Information Needed]