|
--- |
|
base_model: stabilityai/stable-diffusion-xl-base-1.0 |
|
library_name: diffusers |
|
license: openrail++ |
|
tags: |
|
- text-to-image |
|
- text-to-image |
|
- diffusers-training |
|
- diffusers |
|
- stable-diffusion-2 |
|
- stable-diffusion-2-diffusers |
|
instance_prompt: <leaf microstructure> |
|
widget: [] |
|
--- |
|
|
|
# Stable Diffusion 2.x Fine-tuned with Leaf Images |
|
|
|
## Model description |
|
|
|
These are fine-tuned weights for the ```stabilityai/stable-diffusion-2``` model. This is a full fine-tune of the model using DreamBooth. |
|
|
|
## Trigger keywords |
|
|
|
The following image were used during fine-tuning using the keyword \<leaf microstructure\>: |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/sI_exTnLy6AtOFDX1-7eq.png) |
|
|
|
You should use <leaf microstructure> to trigger the image generation. |
|
|
|
## How to use |
|
|
|
Defining some helper functions: |
|
|
|
```python |
|
from diffusers import DiffusionPipeline |
|
import torch |
|
import os |
|
from datetime import datetime |
|
from PIL import Image |
|
|
|
def generate_filename(base_name, extension=".png"): |
|
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") |
|
return f"{base_name}_{timestamp}{extension}" |
|
|
|
def save_image(image, directory, base_name="image_grid"): |
|
|
|
filename = generate_filename(base_name) |
|
file_path = os.path.join(directory, filename) |
|
image.save(file_path) |
|
print(f"Image saved as {file_path}") |
|
|
|
def image_grid(imgs, rows, cols, save=True, save_dir='generated_images', base_name="image_grid", |
|
save_individual_files=False): |
|
|
|
if not os.path.exists(save_dir): |
|
os.makedirs(save_dir) |
|
|
|
assert len(imgs) == rows * cols |
|
|
|
w, h = imgs[0].size |
|
grid = Image.new('RGB', size=(cols * w, rows * h)) |
|
grid_w, grid_h = grid.size |
|
|
|
for i, img in enumerate(imgs): |
|
grid.paste(img, box=(i % cols * w, i // cols * h)) |
|
if save_individual_files: |
|
save_image(img, save_dir, base_name=base_name+f'_{i}-of-{len(imgs)}_') |
|
|
|
if save and save_dir: |
|
save_image(grid, save_dir, base_name) |
|
|
|
return grid |
|
``` |
|
|
|
### Text-to-image |
|
|
|
Model loading: |
|
|
|
```python |
|
|
|
import torch |
|
from diffusers import DPMSolverMultistepScheduler |
|
|
|
repo_id='lamm-mit/SD2x-leaf-inspired' |
|
|
|
pipe = StableDiffusionPipeline.from_pretrained(repo_id, |
|
scheduler = DPMSolverMultistepScheduler.from_pretrained(args.output_dir, subfolder="scheduler"), |
|
torch_dtype=torch.float16, |
|
).to("cuda") |
|
|
|
``` |
|
|
|
Image generation: |
|
|
|
```python |
|
prompt = "a vase that resembles a <leaf microstructure>, high quality" |
|
num_samples = 4 |
|
num_rows = 4 |
|
|
|
all_images = [] |
|
for _ in range(num_rows): |
|
images = pipe(prompt, num_images_per_prompt=num_samples, num_inference_steps=50, guidance_scale=15).images |
|
all_images.extend(images) |
|
|
|
grid = image_grid(all_images, num_rows, num_samples) |
|
grid |
|
``` |
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/SI5aYv2dygJn0Y12LIqqe.png) |
|
|
|
## Fine-tuning script |
|
|
|
Download this script: [SD2x DreamBooth-Fine-Tune.ipynb](https://huggingface.co/lamm-mit/SD2x-leaf-inspired/resolve/main/SD2x_DreamBooth_Fine-Tune.ipynb) |
|
|
|
You need to create a local folder ```leaf_concept_dir``` and add the leaf images (provided in this repository, see subfolder), like so: |
|
|
|
```python |
|
save_path='leaf_concept_dir' |
|
urls = [ |
|
"https://www.dropbox.com/scl/fi/4s09djm4nqxmq6vhvv9si/13_.jpg?rlkey=3m2f90pjofljmlqg5uc722i6y&dl=1", |
|
"https://www.dropbox.com/scl/fi/w4jsrf0qmrcro37nxutbx/25_.jpg?rlkey=e52gnoqaar33kwrd01h1mwcnk&dl=1", |
|
"https://www.dropbox.com/scl/fi/x0xgavduor4cbxz0sdcd2/33_.jpg?rlkey=5htaicapahhn66wnsr23v1nxz&dl=1", |
|
"https://www.dropbox.com/scl/fi/2grt40acypah9h9ok607q/72_.jpg?rlkey=bl6vfv0rcas2ygsz6o3behlst&dl=1", |
|
"https://www.dropbox.com/scl/fi/ecaf9agzdj2cawspmyt5i/117_.jpg?rlkey=oqxyk9i1wtu1wtkqadd6ylyjj&dl=1", |
|
"https://www.dropbox.com/scl/fi/gw3p73r99fleozr6ckfa3/126_.jpg?rlkey=6n7kqaklczshht1ntyqunh2lt&dl=1", |
|
## You can add additional images here |
|
] |
|
images = list(filter(None,[download_image(url) for url in urls])) |
|
|
|
if not os.path.exists(save_path): |
|
os.mkdir(save_path) |
|
|
|
[image.save(f"{save_path}/{i}.jpeg") for i, image in enumerate(images)] |
|
image_grid(images, 1, len(images)) |
|
``` |
|
|
|
The training script is included in the Jupyter notebook. |
|
|
|
## More examples |
|
|
|
```python |
|
prompt = "a conch shell on black background that resembles a <leaf microstructure>, high quality" |
|
num_samples = 4 |
|
num_rows = 4 |
|
all_images = [] |
|
for _ in range(num_rows): |
|
images = pipe(prompt, num_images_per_prompt=num_samples, num_inference_steps=50, guidance_scale=15).images |
|
all_images.extend(images) |
|
grid = image_grid(all_images, num_rows, num_samples) |
|
grid |
|
``` |
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/eE1xBqyVA4sP4gx6tAEGc.png) |
|
|
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/Ga808aW5H27f0hPq_RNme.png) |
|
|
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/r0dUyA-Gh_biy5d-4lTl0.png) |
|
|
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/iEjozBWOQQwxNVuKWZ7TT.png) |
|
|
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/ESvd6cCkyJZ52Cu3iYfoP.png) |
|
|
|
|
|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/2FExqoj8TSjJoIiw4wCm6.png) |
|
|