metadata
tags:
- flair
- token-classification
- sequence-tagger-model
language: uk
datasets:
- ner-uk
model-index:
- name: flair-uk-ner
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.8616
- name: NER Recall
type: recall
value: 0.8593
- name: NER F Score
type: f_score
value: 0.8605
widget:
- text: >-
Президент Володимир Зеленський пояснив, що наразі діалог із режимом
Володимира путіна неможливий, адже агресор обрав курс на знищення
українського народу. За словами Зеленського цей режим РФ виявляє неповагу
до суверенітету і територіальної цілісності України.
license: mit
flair-uk-ner
Model description
flair-uk-ner is a Flair model that is ready to use for Named Entity Recognition. It is based on flair embeddings, that I've trained for Ukrainian language (available here and here) and has nice performance and a very small size (just 72mb!).
It has been trained to recognize four types of entities: location (LOC), organizations (ORG), person (PERS) and Miscellaneous (MISC).
Results:
- F-score (micro) 0.8605
- F-score (macro) 0.7472
- Accuracy 0.8033
by class | precision | recall | f1-score | support |
---|---|---|---|---|
PERS | 0.9305 | 0.9422 | 0.9363 | 1678 |
LOC | 0.8150 | 0.8678 | 0.8406 | 401 |
ORG | 0.6653 | 0.6092 | 0.6360 | 261 |
MISC | 0.6202 | 0.5375 | 0.5759 | 240 |
micro avg | 0.8616 | 0.8593 | 0.8605 | 2580 |
macro avg | 0.7577 | 0.7392 | 0.7472 | 2580 |
weighted avg | 0.8569 | 0.8593 | 0.8575 | 2580 |
The model was fine-tuned on the NER-UK dataset, released by the lang-uk. Training code is also available here.
Copyright: Dmytro Chaplynskyi, lang-uk project, 2022