Edit model card

distilbert-base-uncased-lora-text-classification

This model is a fine-tuned version of distilbert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9725
  • Accuracy: {'accuracy': 0.891}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy
No log 1.0 250 0.4241 {'accuracy': 0.872}
0.4269 2.0 500 0.5036 {'accuracy': 0.861}
0.4269 3.0 750 0.5352 {'accuracy': 0.892}
0.1965 4.0 1000 0.8070 {'accuracy': 0.878}
0.1965 5.0 1250 0.7119 {'accuracy': 0.89}
0.0751 6.0 1500 0.7886 {'accuracy': 0.89}
0.0751 7.0 1750 0.9721 {'accuracy': 0.885}
0.0192 8.0 2000 0.9711 {'accuracy': 0.883}
0.0192 9.0 2250 0.9572 {'accuracy': 0.894}
0.0184 10.0 2500 0.9725 {'accuracy': 0.891}

Framework versions

  • PEFT 0.11.1
  • Transformers 4.41.2
  • Pytorch 2.1.2+cpu
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for lccbrian/distilbert-base-uncased-lora-text-classification

Adapter
(200)
this model