k4black's picture
update model card README.md
373ccf0
|
raw
history blame
1.8 kB
---
license: mit
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: edos-2023-baseline-xlm-roberta-base-label_category
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# edos-2023-baseline-xlm-roberta-base-label_category
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0636
- F1: 0.5250
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- num_epochs: 12
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 1.2188 | 1.18 | 100 | 1.1325 | 0.1501 |
| 1.0837 | 2.35 | 200 | 1.0649 | 0.2187 |
| 0.9903 | 3.53 | 300 | 1.0039 | 0.4133 |
| 0.8634 | 4.71 | 400 | 0.9906 | 0.4265 |
| 0.812 | 5.88 | 500 | 1.0208 | 0.4634 |
| 0.7195 | 7.06 | 600 | 1.0297 | 0.5146 |
| 0.6659 | 8.24 | 700 | 1.0636 | 0.5250 |
### Framework versions
- Transformers 4.24.0
- Pytorch 1.12.1+cu113
- Datasets 2.7.1
- Tokenizers 0.13.2