lealdaniel's picture
Embeddings model v2 (#1)
28449f4 verified
metadata
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:4372
  - loss:MultipleNegativesRankingLoss
base_model: sentence-transformers/all-mpnet-base-v2
widget:
  - source_sentence: analista de produtos pl
    sentences:
      - product management
      - business operations
      - logistic management generalist
  - source_sentence: product analyst ii
    sentences:
      - product management
      - business development (bizdev)
      - compliance
  - source_sentence: analista de gestão de gente pl
    sentences:
      - data engineering
      - hr generalist
      - data analysis
  - source_sentence: general services
    sentences:
      - financial planning and analysis (fp&a)
      - customer success
      - general services
  - source_sentence: const parceria de negocio ii
    sentences:
      - hr generalist
      - copywriter
      - business development (bizdev)
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
  - cosine_accuracy@1
  - cosine_accuracy@3
  - cosine_accuracy@5
  - cosine_accuracy@10
  - cosine_precision@1
  - cosine_precision@3
  - cosine_precision@5
  - cosine_precision@10
  - cosine_recall@1
  - cosine_recall@3
  - cosine_recall@5
  - cosine_recall@10
  - cosine_ndcg@10
  - cosine_mrr@10
  - cosine_map@100
model-index:
  - name: SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
    results:
      - task:
          type: information-retrieval
          name: Information Retrieval
        dataset:
          name: Unknown
          type: unknown
        metrics:
          - type: cosine_accuracy@1
            value: 0.3202195791399817
            name: Cosine Accuracy@1
          - type: cosine_accuracy@3
            value: 0.454711802378774
            name: Cosine Accuracy@3
          - type: cosine_accuracy@5
            value: 0.5224153705397987
            name: Cosine Accuracy@5
          - type: cosine_accuracy@10
            value: 0.6184812442817932
            name: Cosine Accuracy@10
          - type: cosine_precision@1
            value: 0.3202195791399817
            name: Cosine Precision@1
          - type: cosine_precision@3
            value: 0.15157060079292467
            name: Cosine Precision@3
          - type: cosine_precision@5
            value: 0.10448307410795975
            name: Cosine Precision@5
          - type: cosine_precision@10
            value: 0.061848124428179316
            name: Cosine Precision@10
          - type: cosine_recall@1
            value: 0.3202195791399817
            name: Cosine Recall@1
          - type: cosine_recall@3
            value: 0.454711802378774
            name: Cosine Recall@3
          - type: cosine_recall@5
            value: 0.5224153705397987
            name: Cosine Recall@5
          - type: cosine_recall@10
            value: 0.6184812442817932
            name: Cosine Recall@10
          - type: cosine_ndcg@10
            value: 0.45577270813945114
            name: Cosine Ndcg@10
          - type: cosine_mrr@10
            value: 0.4052037496913979
            name: Cosine Mrr@10
          - type: cosine_map@100
            value: 0.4178228611548902
            name: Cosine Map@100

SentenceTransformer based on sentence-transformers/all-mpnet-base-v2

This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-mpnet-base-v2
  • Maximum Sequence Length: 384 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'const parceria de negocio ii',
    'business development (bizdev)',
    'hr generalist',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Information Retrieval

Metric Value
cosine_accuracy@1 0.3202
cosine_accuracy@3 0.4547
cosine_accuracy@5 0.5224
cosine_accuracy@10 0.6185
cosine_precision@1 0.3202
cosine_precision@3 0.1516
cosine_precision@5 0.1045
cosine_precision@10 0.0618
cosine_recall@1 0.3202
cosine_recall@3 0.4547
cosine_recall@5 0.5224
cosine_recall@10 0.6185
cosine_ndcg@10 0.4558
cosine_mrr@10 0.4052
cosine_map@100 0.4178

Training Details

Training Dataset

Unnamed Dataset

  • Size: 4,372 training samples
  • Columns: input and output
  • Approximate statistics based on the first 1000 samples:
    input output
    type string string
    details
    • min: 3 tokens
    • mean: 10.55 tokens
    • max: 141 tokens
    • min: 3 tokens
    • mean: 5.03 tokens
    • max: 12 tokens
  • Samples:
    input output
    analista de desenvolvimento organizacional learning & development
    software engineer sr software engineering
    gerente de grupo de produtos i product management
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 1,093 evaluation samples
  • Columns: input and output
  • Approximate statistics based on the first 1000 samples:
    input output
    type string string
    details
    • min: 3 tokens
    • mean: 9.91 tokens
    • max: 122 tokens
    • min: 3 tokens
    • mean: 4.97 tokens
    • max: 12 tokens
  • Samples:
    input output
    analista de student experience ii customer support
    legal support legal support
    analista de dho learning & development
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • warmup_ratio: 0.1
  • load_best_model_at_end: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 8
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 3
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step cosine_ndcg@10
0 0 0.4558

Framework Versions

  • Python: 3.11.0
  • Sentence Transformers: 3.3.1
  • Transformers: 4.46.3
  • PyTorch: 2.2.2
  • Accelerate: 1.1.1
  • Datasets: 3.1.0
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}