Whisper Base Mnong
This model is a fine-tuned version of openai/whisper-base on the MnongAudio-v2 dataset. It achieves the following results on the evaluation set:
- Loss: 0.5864
- Wer: 73.4845
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 4000
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
2.7525 | 0.1421 | 200 | 2.6537 | 416.5818 |
2.2459 | 0.2843 | 400 | 2.2237 | 158.5838 |
1.8682 | 0.4264 | 600 | 1.8896 | 237.7483 |
1.7212 | 0.5686 | 800 | 1.6295 | 110.0866 |
1.4164 | 0.7107 | 1000 | 1.4443 | 108.9913 |
1.2698 | 0.8529 | 1200 | 1.3000 | 91.3653 |
1.1479 | 0.9950 | 1400 | 1.1657 | 102.3688 |
1.0034 | 1.1372 | 1600 | 1.0799 | 84.6918 |
0.945 | 1.2793 | 1800 | 0.9844 | 85.7106 |
0.8249 | 1.4215 | 2000 | 0.8974 | 87.1880 |
0.726 | 1.5636 | 2200 | 0.8412 | 92.9699 |
0.7561 | 1.7058 | 2400 | 0.7859 | 80.8202 |
0.6884 | 1.8479 | 2600 | 0.7328 | 85.3031 |
0.6329 | 1.9900 | 2800 | 0.6872 | 80.9985 |
0.5129 | 2.1322 | 3000 | 0.6672 | 76.4901 |
0.5361 | 2.2743 | 3200 | 0.6369 | 78.2985 |
0.482 | 2.4165 | 3400 | 0.6178 | 75.9042 |
0.5211 | 2.5586 | 3600 | 0.6030 | 79.3938 |
0.4749 | 2.7008 | 3800 | 0.5905 | 76.0316 |
0.4648 | 2.8429 | 4000 | 0.5864 | 73.4845 |
Framework versions
- Transformers 4.43.4
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 3
Model tree for legendary2910/Mnong-ASR-v3-enhanced
Base model
openai/whisper-base