|
--- |
|
base_model: openai/whisper-base |
|
language: |
|
- vi |
|
license: apache-2.0 |
|
metrics: |
|
- wer |
|
tags: |
|
- hf-asr-leaderboard |
|
- generated_from_trainer |
|
model-index: |
|
- name: Whisper Base Mnong |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper Base Mnong |
|
|
|
This model is a fine-tuned version of [openai/whisper-base](https://huggingface.co/openai/whisper-base) on the MnongAudio-v2 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.7611 |
|
- Wer: 77.7127 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 1e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 4000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:| |
|
| 2.7389 | 0.2915 | 200 | 2.6665 | 373.6628 | |
|
| 2.2233 | 0.5831 | 400 | 2.2426 | 189.4549 | |
|
| 1.8164 | 0.8746 | 600 | 1.8990 | 131.6353 | |
|
| 1.5731 | 1.1662 | 800 | 1.6678 | 124.3760 | |
|
| 1.4459 | 1.4577 | 1000 | 1.4828 | 95.8227 | |
|
| 1.3009 | 1.7493 | 1200 | 1.3453 | 96.9689 | |
|
| 1.0242 | 2.0408 | 1400 | 1.2264 | 89.9898 | |
|
| 0.9227 | 2.3324 | 1600 | 1.1492 | 80.0815 | |
|
| 0.9111 | 2.6239 | 1800 | 1.0539 | 83.2399 | |
|
| 0.8831 | 2.9155 | 2000 | 0.9899 | 88.1814 | |
|
| 0.5906 | 3.2070 | 2200 | 0.9452 | 84.5899 | |
|
| 0.54 | 3.4985 | 2400 | 0.9017 | 79.6740 | |
|
| 0.542 | 3.7901 | 2600 | 0.8713 | 72.2364 | |
|
| 0.4606 | 4.0816 | 2800 | 0.8320 | 72.9241 | |
|
| 0.4879 | 4.3732 | 3000 | 0.8172 | 75.4712 | |
|
| 0.4033 | 4.6647 | 3200 | 0.7940 | 75.9552 | |
|
| 0.4235 | 4.9563 | 3400 | 0.7737 | 73.2552 | |
|
| 0.3638 | 5.2478 | 3600 | 0.7704 | 79.2155 | |
|
| 0.383 | 5.5394 | 3800 | 0.7641 | 77.7382 | |
|
| 0.3714 | 5.8309 | 4000 | 0.7611 | 77.7127 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.4 |
|
- Pytorch 2.4.0+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|