Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: tlphams/gollm-12.8b-instruct-v2.3
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - b3e9697f11b5eef2_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/b3e9697f11b5eef2_train_data.json
  type:
    field_input: input
    field_instruction: instruction
    field_output: output
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: false
hub_model_id: leixa/1174c466-99eb-48ba-a40d-47eef5954a4e
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/b3e9697f11b5eef2_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: 0025c534-904f-4d00-b006-cd010fa027a2
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 0025c534-904f-4d00-b006-cd010fa027a2
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

1174c466-99eb-48ba-a40d-47eef5954a4e

This model is a fine-tuned version of tlphams/gollm-12.8b-instruct-v2.3 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8748

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss
No log 0.0002 1 1.2376
4.8303 0.0019 9 1.1936
4.2037 0.0039 18 1.0546
3.9859 0.0058 27 0.9772
3.8141 0.0078 36 0.9405
3.8875 0.0097 45 0.9152
3.7556 0.0117 54 0.8987
3.4016 0.0136 63 0.8870
3.3678 0.0155 72 0.8805
3.4939 0.0175 81 0.8767
3.6648 0.0194 90 0.8751
3.5732 0.0214 99 0.8748

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for leixa/1174c466-99eb-48ba-a40d-47eef5954a4e

Adapter
(179)
this model