See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: elyza/Llama-3-ELYZA-JP-8B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- e000bff3680ac2a2_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/e000bff3680ac2a2_train_data.json
type:
field_input: issue_body
field_instruction: issue_title
field_output: issue_msg
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: leixa/1936e160-dae4-4923-ac5a-2de62ec0e091
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 72GB
max_steps: 50
micro_batch_size: 8
mlflow_experiment_name: /tmp/e000bff3680ac2a2_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
special_tokens:
pad_token: <|eot_id|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: 1936e160-dae4-4923-ac5a-2de62ec0e091
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 1936e160-dae4-4923-ac5a-2de62ec0e091
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
1936e160-dae4-4923-ac5a-2de62ec0e091
This model is a fine-tuned version of elyza/Llama-3-ELYZA-JP-8B on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0061
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0080 | 1 | 0.3813 |
0.325 | 0.0402 | 5 | 0.2198 |
0.094 | 0.0805 | 10 | 0.0474 |
0.0303 | 0.1207 | 15 | 0.0226 |
0.0165 | 0.1610 | 20 | 0.0131 |
0.013 | 0.2012 | 25 | 0.0101 |
0.009 | 0.2414 | 30 | 0.0081 |
0.0068 | 0.2817 | 35 | 0.0070 |
0.0069 | 0.3219 | 40 | 0.0064 |
0.0063 | 0.3622 | 45 | 0.0062 |
0.0043 | 0.4024 | 50 | 0.0061 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 10
Model tree for leixa/1936e160-dae4-4923-ac5a-2de62ec0e091
Base model
elyza/Llama-3-ELYZA-JP-8B