See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: princeton-nlp/gemma-2-9b-it-SimPO
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 625865432dbb1ed0_train_data.json
ds_type: json
field: answer
path: /workspace/input_data/625865432dbb1ed0_train_data.json
type: completion
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: leixa/562b395e-82d3-4e7f-bfd6-c91ee5e35a23
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_steps: 500
micro_batch_size: 8
mlflow_experiment_name: /tmp/625865432dbb1ed0_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: 562b395e-82d3-4e7f-bfd6-c91ee5e35a23
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 562b395e-82d3-4e7f-bfd6-c91ee5e35a23
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null
562b395e-82d3-4e7f-bfd6-c91ee5e35a23
This model is a fine-tuned version of princeton-nlp/gemma-2-9b-it-SimPO on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.9969
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 130
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0230 | 1 | 9.3099 |
3.933 | 0.2529 | 11 | 3.1609 |
2.1133 | 0.5057 | 22 | 2.0404 |
1.4659 | 0.7586 | 33 | 1.6160 |
1.234 | 1.0115 | 44 | 1.3426 |
0.9555 | 1.2644 | 55 | 1.2751 |
1.0438 | 1.5172 | 66 | 1.2140 |
0.7003 | 1.7701 | 77 | 1.1194 |
0.9279 | 2.0230 | 88 | 1.0316 |
0.5523 | 2.2759 | 99 | 1.0169 |
0.6258 | 2.5287 | 110 | 1.0043 |
0.6285 | 2.7816 | 121 | 0.9969 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 5
Model tree for leixa/562b395e-82d3-4e7f-bfd6-c91ee5e35a23
Base model
google/gemma-2-9b
Finetuned
google/gemma-2-9b-it
Finetuned
princeton-nlp/gemma-2-9b-it-SimPO