Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: fxmarty/tiny-random-GemmaForCausalLM
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 0168dad86ef44d3d_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/0168dad86ef44d3d_train_data.json
  type:
    field_instruction: question
    field_output: answer_majority
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: false
hub_model_id: leixa/ee76f0ba-1a2e-4a9b-bc8e-5c588f64a8c0
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: 0
logging_steps: 3
lora_alpha: 128
lora_dropout: 0.1
lora_fan_in_fan_out: true
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_steps: 150
micro_batch_size: 8
mlflow_experiment_name: /tmp/0168dad86ef44d3d_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: false
sample_packing: false
saves_per_epoch: 4
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: leixa-personal
wandb_mode: online
wandb_name: ee76f0ba-1a2e-4a9b-bc8e-5c588f64a8c0
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: ee76f0ba-1a2e-4a9b-bc8e-5c588f64a8c0
warmup_steps: 10
weight_decay: 0.001
xformers_attention: null

ee76f0ba-1a2e-4a9b-bc8e-5c588f64a8c0

This model is a fine-tuned version of fxmarty/tiny-random-GemmaForCausalLM on the None dataset. It achieves the following results on the evaluation set:

  • Loss: nan

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 116

Training results

Training Loss Epoch Step Validation Loss
No log 0.0258 1 nan
0.0 0.2581 10 nan
0.0 0.5161 20 nan
0.0 0.7742 30 nan
0.0 1.0387 40 nan
0.0 1.2968 50 nan
0.0 1.5548 60 nan
0.0 1.8129 70 nan
0.0 2.0774 80 nan
0.0 2.3355 90 nan
0.0 2.5935 100 nan
0.0 2.8516 110 nan

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for leixa/ee76f0ba-1a2e-4a9b-bc8e-5c588f64a8c0

Adapter
(88)
this model