distilhubert-finetuned-gtzan
This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:
- Loss: 0.5224
- Accuracy: 0.88
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 15
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
2.1398 | 1.0 | 56 | 2.1305 | 0.41 |
1.6997 | 1.99 | 112 | 1.6665 | 0.55 |
1.3111 | 2.99 | 168 | 1.2401 | 0.7 |
1.0423 | 4.0 | 225 | 1.1047 | 0.7 |
0.8737 | 5.0 | 281 | 0.9386 | 0.71 |
0.7303 | 5.99 | 337 | 0.7536 | 0.77 |
0.5814 | 6.99 | 393 | 0.7451 | 0.8 |
0.4965 | 8.0 | 450 | 0.7118 | 0.76 |
0.3755 | 9.0 | 506 | 0.6023 | 0.84 |
0.3492 | 9.99 | 562 | 0.6544 | 0.83 |
0.1924 | 10.99 | 618 | 0.5607 | 0.88 |
0.1424 | 12.0 | 675 | 0.5156 | 0.86 |
0.1047 | 13.0 | 731 | 0.5138 | 0.89 |
0.0897 | 13.99 | 787 | 0.5660 | 0.84 |
0.0819 | 14.93 | 840 | 0.5224 | 0.88 |
Framework versions
- Transformers 4.30.1
- Pytorch 2.0.1+cu118
- Datasets 2.14.4
- Tokenizers 0.13.3
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.