distilbert-base-uncased-lora-text-classification
This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.0657
- Accuracy: {'accuracy': 0.7330827067669173}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.9636 | 1.0 | 538 | 0.8582 | {'accuracy': 0.6992481203007519} |
0.7447 | 2.0 | 1076 | 1.0010 | {'accuracy': 0.7030075187969925} |
0.5876 | 3.0 | 1614 | 0.9129 | {'accuracy': 0.7142857142857143} |
0.4728 | 4.0 | 2152 | 1.1641 | {'accuracy': 0.7255639097744361} |
0.4145 | 5.0 | 2690 | 1.3646 | {'accuracy': 0.7330827067669173} |
0.2917 | 6.0 | 3228 | 1.4447 | {'accuracy': 0.7556390977443609} |
0.2485 | 7.0 | 3766 | 1.7574 | {'accuracy': 0.7330827067669173} |
0.1596 | 8.0 | 4304 | 1.9367 | {'accuracy': 0.7330827067669173} |
0.1468 | 9.0 | 4842 | 2.0091 | {'accuracy': 0.7368421052631579} |
0.1128 | 10.0 | 5380 | 2.0657 | {'accuracy': 0.7330827067669173} |
Framework versions
- PEFT 0.11.1
- Transformers 4.41.0
- Pytorch 2.3.0
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 1
Model tree for lennon2020/distilbert-base-uncased-lora-text-classification
Base model
distilbert/distilbert-base-uncased