bert-base-chinese-finetuned-ner-v1

This model is a fine-tuned version of bert-base-chinese on the fdner dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0413
  • Precision: 0.9812
  • Recall: 0.9886
  • F1: 0.9849
  • Accuracy: 0.9910

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 10
  • eval_batch_size: 10
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 8 2.0640 0.0 0.0 0.0 0.4323
No log 2.0 16 1.7416 0.0204 0.0227 0.0215 0.5123
No log 3.0 24 1.5228 0.0306 0.0265 0.0284 0.5456
No log 4.0 32 1.2597 0.0961 0.1591 0.1198 0.6491
No log 5.0 40 1.0273 0.1588 0.2159 0.1830 0.7450
No log 6.0 48 0.8026 0.2713 0.3258 0.2960 0.8208
No log 7.0 56 0.6547 0.36 0.4091 0.3830 0.8513
No log 8.0 64 0.5180 0.4650 0.5038 0.4836 0.8873
No log 9.0 72 0.4318 0.5139 0.5606 0.5362 0.9067
No log 10.0 80 0.3511 0.6169 0.6894 0.6512 0.9291
No log 11.0 88 0.2887 0.6691 0.6894 0.6791 0.9414
No log 12.0 96 0.2396 0.7042 0.7576 0.7299 0.9516
No log 13.0 104 0.2052 0.7568 0.8371 0.7950 0.9587
No log 14.0 112 0.1751 0.8303 0.8712 0.8503 0.9610
No log 15.0 120 0.1512 0.8464 0.8977 0.8713 0.9668
No log 16.0 128 0.1338 0.8759 0.9091 0.8922 0.9710
No log 17.0 136 0.1147 0.8959 0.9129 0.9043 0.9746
No log 18.0 144 0.1011 0.9326 0.9432 0.9379 0.9761
No log 19.0 152 0.0902 0.9251 0.9356 0.9303 0.9795
No log 20.0 160 0.0806 0.9440 0.9583 0.9511 0.9804
No log 21.0 168 0.0743 0.9586 0.9659 0.9623 0.9812
No log 22.0 176 0.0649 0.9511 0.9583 0.9547 0.9851
No log 23.0 184 0.0595 0.9591 0.9773 0.9681 0.9876
No log 24.0 192 0.0537 0.9625 0.9735 0.9680 0.9883
No log 25.0 200 0.0505 0.9701 0.9848 0.9774 0.9894
No log 26.0 208 0.0464 0.9737 0.9811 0.9774 0.9904
No log 27.0 216 0.0439 0.9737 0.9811 0.9774 0.9906
No log 28.0 224 0.0428 0.9812 0.9886 0.9849 0.9910
No log 29.0 232 0.0417 0.9812 0.9886 0.9849 0.9910
No log 30.0 240 0.0413 0.9812 0.9886 0.9849 0.9910

Framework versions

  • Transformers 4.18.0
  • Pytorch 1.10.0+cu111
  • Datasets 2.0.0
  • Tokenizers 0.11.6
Downloads last month
24
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results