Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: llamafactory/tiny-random-Llama-3
bf16: true
chat_template: llama3
datasets:
- data_files:
  - 204687a13aa9bcd6_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/204687a13aa9bcd6_train_data.json
  type:
    field_input: choices
    field_instruction: question
    field_output: answerKey
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: lesso02/490996ac-b460-41bc-a3b5-0f56ce8fcf17
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 77GiB
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/204687a13aa9bcd6_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 1024
special_tokens:
  pad_token: <|eot_id|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 490996ac-b460-41bc-a3b5-0f56ce8fcf17
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 490996ac-b460-41bc-a3b5-0f56ce8fcf17
warmup_steps: 10
weight_decay: 0.01
xformers_attention: false

490996ac-b460-41bc-a3b5-0f56ce8fcf17

This model is a fine-tuned version of llamafactory/tiny-random-Llama-3 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 11.6891

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 100

Training results

Training Loss Epoch Step Validation Loss
11.7375 0.0017 1 11.7815
11.7872 0.0155 9 11.7768
11.7622 0.0310 18 11.7650
11.7631 0.0465 27 11.7523
11.7353 0.0620 36 11.7387
11.7386 0.0775 45 11.7250
11.72 0.0929 54 11.7123
11.7057 0.1084 63 11.7020
11.6834 0.1239 72 11.6950
11.6854 0.1394 81 11.6910
11.6994 0.1549 90 11.6894
11.704 0.1704 99 11.6891

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
49
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for lesso02/490996ac-b460-41bc-a3b5-0f56ce8fcf17

Adapter
(173)
this model