Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: bigscience/bloomz-560m
bf16: true
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 7192ef43eaa7c967_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/7192ef43eaa7c967_train_data.json
  type:
    field_input: nota
    field_instruction: title_main
    field_output: texte
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: 5
eval_batch_size: 4
eval_max_new_tokens: 128
eval_steps: 50
eval_table_size: null
evals_per_epoch: null
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
group_by_length: true
hub_model_id: lesso03/4e64d89c-75df-4d61-83e9-4bb84c02bb9c
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.00011
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 128
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 64
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
  0: 75GB
max_steps: 200
micro_batch_size: 8
mlflow_experiment_name: /tmp/7192ef43eaa7c967_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
  adam_beta1: 0.9
  adam_beta2: 0.95
  adam_epsilon: 1e-5
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
saves_per_epoch: null
sequence_len: 1024
strict: false
tf32: true
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 696cf570-b53e-40bf-b0ad-c4554a4baf01
wandb_project: new
wandb_run: your_name
wandb_runid: 696cf570-b53e-40bf-b0ad-c4554a4baf01
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null

4e64d89c-75df-4d61-83e9-4bb84c02bb9c

This model is a fine-tuned version of bigscience/bloomz-560m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3723

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.00011
  • train_batch_size: 8
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 200

Training results

Training Loss Epoch Step Validation Loss
8.7623 0.0002 1 2.9979
10.0361 0.0109 50 2.6280
9.8738 0.0219 100 2.4841
9.328 0.0328 150 2.3908
10.4375 0.0438 200 2.3723

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
13
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for lesso03/4e64d89c-75df-4d61-83e9-4bb84c02bb9c

Adapter
(373)
this model