See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: trl-internal-testing/tiny-random-LlamaForCausalLM
bf16: true
chat_template: llama3
datasets:
- data_files:
- ac472439826f9bcc_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/ac472439826f9bcc_train_data.json
type:
field_input: perturbation_type
field_instruction: question
field_output: answers
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: false
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: true
group_by_length: false
hub_model_id: lesso06/b889e93e-ed1f-481b-a9a5-755bc06625f6
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 77GiB
max_steps: 100
micro_batch_size: 8
mlflow_experiment_name: /tmp/ac472439826f9bcc_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: b889e93e-ed1f-481b-a9a5-755bc06625f6
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: b889e93e-ed1f-481b-a9a5-755bc06625f6
warmup_steps: 10
weight_decay: 0.01
xformers_attention: false
b889e93e-ed1f-481b-a9a5-755bc06625f6
This model is a fine-tuned version of trl-internal-testing/tiny-random-LlamaForCausalLM on the None dataset. It achieves the following results on the evaluation set:
- Loss: 10.3567
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
10.367 | 0.0001 | 1 | 10.3746 |
10.378 | 0.0012 | 9 | 10.3739 |
10.3694 | 0.0024 | 18 | 10.3717 |
10.3614 | 0.0037 | 27 | 10.3694 |
10.3673 | 0.0049 | 36 | 10.3669 |
10.3539 | 0.0061 | 45 | 10.3644 |
10.3705 | 0.0073 | 54 | 10.3620 |
10.3618 | 0.0085 | 63 | 10.3599 |
10.3559 | 0.0097 | 72 | 10.3583 |
10.3567 | 0.0110 | 81 | 10.3572 |
10.3556 | 0.0122 | 90 | 10.3568 |
10.3637 | 0.0134 | 99 | 10.3567 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 14