Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
base_model: fxmarty/tiny-llama-fast-tokenizer
bf16: false
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
  - 3db417741c827574_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/3db417741c827574_train_data.json
  type:
    field_instruction: text
    field_output: label
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: true
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: lesso07/f2dfcc7b-47ff-4910-a268-d4f1a48b7dde
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0001
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lr_scheduler: cosine
max_memory:
  0: 70GiB
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/3db417741c827574_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 25
save_strategy: steps
sequence_len: 1024
special_tokens:
  pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: f2dfcc7b-47ff-4910-a268-d4f1a48b7dde
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: f2dfcc7b-47ff-4910-a268-d4f1a48b7dde
warmup_steps: 10
weight_decay: 0.01
xformers_attention: null

f2dfcc7b-47ff-4910-a268-d4f1a48b7dde

This model is a fine-tuned version of fxmarty/tiny-llama-fast-tokenizer on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 10.3656

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 50
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
10.3834 0.0106 1 10.3868
10.3755 0.0532 5 10.3861
10.3848 0.1064 10 10.3834
10.3722 0.1596 15 10.3795
10.3713 0.2128 20 10.3757
10.3848 0.2660 25 10.3723
10.3636 0.3191 30 10.3694
10.3623 0.3723 35 10.3674
10.3755 0.4255 40 10.3662
10.3625 0.4787 45 10.3657
10.3623 0.5319 50 10.3656

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.5.0+cu124
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
44
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for lesso07/f2dfcc7b-47ff-4910-a268-d4f1a48b7dde

Adapter
(162)
this model