|
--- |
|
license: mit |
|
base_model: neuralmind/bert-base-portuguese-cased |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- harem |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: NER_harem_bert-base-portuguese-cased |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: harem |
|
type: harem |
|
config: default |
|
split: test |
|
args: default |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.6852879944482998 |
|
- name: Recall |
|
type: recall |
|
value: 0.7377661561449383 |
|
- name: F1 |
|
type: f1 |
|
value: 0.7105594531390537 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.952219112355058 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# NER_harem_bert-base-portuguese-cased |
|
|
|
This model is a fine-tuned version of [neuralmind/bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) on the harem dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2351 |
|
- Precision: 0.6853 |
|
- Recall: 0.7378 |
|
- F1: 0.7106 |
|
- Accuracy: 0.9522 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 300 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 1.0 | 16 | 0.7692 | 0.0 | 0.0 | 0.0 | 0.8358 | |
|
| No log | 2.0 | 32 | 0.4831 | 0.3140 | 0.2731 | 0.2921 | 0.8790 | |
|
| No log | 3.0 | 48 | 0.3405 | 0.4692 | 0.4897 | 0.4793 | 0.9119 | |
|
| No log | 4.0 | 64 | 0.2747 | 0.5481 | 0.6156 | 0.5799 | 0.9340 | |
|
| No log | 5.0 | 80 | 0.2282 | 0.6077 | 0.6758 | 0.6399 | 0.9443 | |
|
| No log | 6.0 | 96 | 0.2145 | 0.6267 | 0.6892 | 0.6565 | 0.9479 | |
|
| No log | 7.0 | 112 | 0.2223 | 0.6395 | 0.6926 | 0.6650 | 0.9493 | |
|
| No log | 8.0 | 128 | 0.2100 | 0.6822 | 0.7378 | 0.7089 | 0.9530 | |
|
| No log | 9.0 | 144 | 0.2077 | 0.6810 | 0.7497 | 0.7137 | 0.9537 | |
|
| No log | 10.0 | 160 | 0.2173 | 0.6846 | 0.7460 | 0.7140 | 0.9523 | |
|
| No log | 11.0 | 176 | 0.2226 | 0.7001 | 0.7594 | 0.7285 | 0.9542 | |
|
| No log | 12.0 | 192 | 0.2204 | 0.7015 | 0.7568 | 0.7281 | 0.9538 | |
|
| No log | 13.0 | 208 | 0.2278 | 0.6746 | 0.7411 | 0.7063 | 0.9533 | |
|
| No log | 14.0 | 224 | 0.2351 | 0.6853 | 0.7378 | 0.7106 | 0.9522 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.38.2 |
|
- Pytorch 2.2.1+cu121 |
|
- Datasets 2.18.0 |
|
- Tokenizers 0.15.2 |
|
|