|
--- |
|
language: |
|
- en |
|
--- |
|
|
|
# pgdyn-plan |
|
|
|
This is a pretrained model for the planning component of the PG_Dyn system, described in the EACL 2023 paper "Document-Level Planning for Text Simplification". |
|
It is the be used in conjunction with [the simplification component](https://huggingface.co/liamcripwell/pgdyn-simp) to form the full pipeline. |
|
The code [in this repo](https://github.com/liamcripwell/plan_simp) should be used. |
|
|
|
## How to use |
|
|
|
Here is how to load this model in PyTorch: |
|
|
|
```python |
|
from plan_simp.models.classifier import load_planner |
|
from plan_simp.models.bart import load_simplifier |
|
|
|
# contextual simplification planner |
|
planner, p_tokenizer, p_hparams = load_planner("liamcripwell/pgdyn-plan") |
|
|
|
# simplification model |
|
simplifier, tokenizer, hparams = load_simplifier("liamcripwell/pgdyn-simp") |
|
``` |
|
|
|
To perform end-to-end planning+simplification with dynamic document context, use the commands below. This assumed data is in a `.csv` format and context representations have been generated for each input document. |
|
|
|
```bash |
|
# using planner |
|
python plan_simp/scripts/generate.py dynamic |
|
--clf_model_ckpt=<planner_model> # e.g. liamcripwell/pgdyn-plan |
|
--model_ckpt=<simplification_model> # e.g. liamcripwell/pgdyn-simp |
|
--test_file=<test_sentences> |
|
--doc_id_col=pair_id # document identifier for each sentence |
|
--context_doc_id=c_id |
|
--context_dir=<context_dir> |
|
--reading_lvl=s_level |
|
--out_file=<output_csv> |
|
|
|
# manual specification of operations (no planner) |
|
python plan_simp/scripts/generate.py inference |
|
--model_ckpt=<simplification_model> # e.g. liamcripwell/pgdyn-simp |
|
--test_file=<test_sentences> |
|
--op_col=label |
|
--reading_lvl=s_level |
|
--out_file=<output_csv> |
|
``` |
|
|