liddlefish's picture
Add new SentenceTransformer model.
6747a57 verified
---
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
- mteb
model-index:
- name: bge-base-en-v1.5
results:
- task:
type: Classification
dataset:
type: mteb/amazon_counterfactual
name: MTEB AmazonCounterfactualClassification (en)
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 76.14925373134328
- type: ap
value: 39.32336517995478
- type: f1
value: 70.16902252611425
- task:
type: Classification
dataset:
type: mteb/amazon_polarity
name: MTEB AmazonPolarityClassification
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 93.386825
- type: ap
value: 90.21276917991995
- type: f1
value: 93.37741030006174
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (en)
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 48.846000000000004
- type: f1
value: 48.14646269778261
- task:
type: Retrieval
dataset:
type: arguana
name: MTEB ArguAna
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 40.754000000000005
- type: map_at_10
value: 55.761
- type: map_at_100
value: 56.330999999999996
- type: map_at_1000
value: 56.333999999999996
- type: map_at_3
value: 51.92
- type: map_at_5
value: 54.010999999999996
- type: mrr_at_1
value: 41.181
- type: mrr_at_10
value: 55.967999999999996
- type: mrr_at_100
value: 56.538
- type: mrr_at_1000
value: 56.542
- type: mrr_at_3
value: 51.980000000000004
- type: mrr_at_5
value: 54.208999999999996
- type: ndcg_at_1
value: 40.754000000000005
- type: ndcg_at_10
value: 63.605000000000004
- type: ndcg_at_100
value: 66.05199999999999
- type: ndcg_at_1000
value: 66.12
- type: ndcg_at_3
value: 55.708
- type: ndcg_at_5
value: 59.452000000000005
- type: precision_at_1
value: 40.754000000000005
- type: precision_at_10
value: 8.841000000000001
- type: precision_at_100
value: 0.991
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 22.238
- type: precision_at_5
value: 15.149000000000001
- type: recall_at_1
value: 40.754000000000005
- type: recall_at_10
value: 88.407
- type: recall_at_100
value: 99.14699999999999
- type: recall_at_1000
value: 99.644
- type: recall_at_3
value: 66.714
- type: recall_at_5
value: 75.747
- task:
type: Clustering
dataset:
type: mteb/arxiv-clustering-p2p
name: MTEB ArxivClusteringP2P
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: v_measure
value: 48.74884539679369
- task:
type: Clustering
dataset:
type: mteb/arxiv-clustering-s2s
name: MTEB ArxivClusteringS2S
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: v_measure
value: 42.8075893810716
- task:
type: Reranking
dataset:
type: mteb/askubuntudupquestions-reranking
name: MTEB AskUbuntuDupQuestions
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: map
value: 62.128470519187736
- type: mrr
value: 74.28065778481289
- task:
type: STS
dataset:
type: mteb/biosses-sts
name: MTEB BIOSSES
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cos_sim_pearson
value: 89.24629081484655
- type: cos_sim_spearman
value: 86.93752309911496
- type: euclidean_pearson
value: 87.58589628573816
- type: euclidean_spearman
value: 88.05622328825284
- type: manhattan_pearson
value: 87.5594959805773
- type: manhattan_spearman
value: 88.19658793233961
- task:
type: Classification
dataset:
type: mteb/banking77
name: MTEB Banking77Classification
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 86.9512987012987
- type: f1
value: 86.92515357973708
- task:
type: Clustering
dataset:
type: mteb/biorxiv-clustering-p2p
name: MTEB BiorxivClusteringP2P
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: v_measure
value: 39.10263762928872
- task:
type: Clustering
dataset:
type: mteb/biorxiv-clustering-s2s
name: MTEB BiorxivClusteringS2S
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: v_measure
value: 36.69711517426737
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackAndroidRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 32.327
- type: map_at_10
value: 44.099
- type: map_at_100
value: 45.525
- type: map_at_1000
value: 45.641999999999996
- type: map_at_3
value: 40.47
- type: map_at_5
value: 42.36
- type: mrr_at_1
value: 39.199
- type: mrr_at_10
value: 49.651
- type: mrr_at_100
value: 50.29
- type: mrr_at_1000
value: 50.329
- type: mrr_at_3
value: 46.924
- type: mrr_at_5
value: 48.548
- type: ndcg_at_1
value: 39.199
- type: ndcg_at_10
value: 50.773
- type: ndcg_at_100
value: 55.67999999999999
- type: ndcg_at_1000
value: 57.495
- type: ndcg_at_3
value: 45.513999999999996
- type: ndcg_at_5
value: 47.703
- type: precision_at_1
value: 39.199
- type: precision_at_10
value: 9.914000000000001
- type: precision_at_100
value: 1.5310000000000001
- type: precision_at_1000
value: 0.198
- type: precision_at_3
value: 21.984
- type: precision_at_5
value: 15.737000000000002
- type: recall_at_1
value: 32.327
- type: recall_at_10
value: 63.743
- type: recall_at_100
value: 84.538
- type: recall_at_1000
value: 96.089
- type: recall_at_3
value: 48.065000000000005
- type: recall_at_5
value: 54.519
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackEnglishRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 32.671
- type: map_at_10
value: 42.954
- type: map_at_100
value: 44.151
- type: map_at_1000
value: 44.287
- type: map_at_3
value: 39.912
- type: map_at_5
value: 41.798
- type: mrr_at_1
value: 41.465
- type: mrr_at_10
value: 49.351
- type: mrr_at_100
value: 49.980000000000004
- type: mrr_at_1000
value: 50.016000000000005
- type: mrr_at_3
value: 47.144000000000005
- type: mrr_at_5
value: 48.592999999999996
- type: ndcg_at_1
value: 41.465
- type: ndcg_at_10
value: 48.565999999999995
- type: ndcg_at_100
value: 52.76499999999999
- type: ndcg_at_1000
value: 54.749
- type: ndcg_at_3
value: 44.57
- type: ndcg_at_5
value: 46.759
- type: precision_at_1
value: 41.465
- type: precision_at_10
value: 9.107999999999999
- type: precision_at_100
value: 1.433
- type: precision_at_1000
value: 0.191
- type: precision_at_3
value: 21.423000000000002
- type: precision_at_5
value: 15.414
- type: recall_at_1
value: 32.671
- type: recall_at_10
value: 57.738
- type: recall_at_100
value: 75.86500000000001
- type: recall_at_1000
value: 88.36
- type: recall_at_3
value: 45.626
- type: recall_at_5
value: 51.812000000000005
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackGamingRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 41.185
- type: map_at_10
value: 53.929
- type: map_at_100
value: 54.92
- type: map_at_1000
value: 54.967999999999996
- type: map_at_3
value: 50.70400000000001
- type: map_at_5
value: 52.673
- type: mrr_at_1
value: 47.398
- type: mrr_at_10
value: 57.303000000000004
- type: mrr_at_100
value: 57.959
- type: mrr_at_1000
value: 57.985
- type: mrr_at_3
value: 54.932
- type: mrr_at_5
value: 56.464999999999996
- type: ndcg_at_1
value: 47.398
- type: ndcg_at_10
value: 59.653
- type: ndcg_at_100
value: 63.627
- type: ndcg_at_1000
value: 64.596
- type: ndcg_at_3
value: 54.455
- type: ndcg_at_5
value: 57.245000000000005
- type: precision_at_1
value: 47.398
- type: precision_at_10
value: 9.524000000000001
- type: precision_at_100
value: 1.243
- type: precision_at_1000
value: 0.13699999999999998
- type: precision_at_3
value: 24.389
- type: precision_at_5
value: 16.752
- type: recall_at_1
value: 41.185
- type: recall_at_10
value: 73.193
- type: recall_at_100
value: 90.357
- type: recall_at_1000
value: 97.253
- type: recall_at_3
value: 59.199999999999996
- type: recall_at_5
value: 66.118
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackGisRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 27.27
- type: map_at_10
value: 36.223
- type: map_at_100
value: 37.218
- type: map_at_1000
value: 37.293
- type: map_at_3
value: 33.503
- type: map_at_5
value: 35.097
- type: mrr_at_1
value: 29.492
- type: mrr_at_10
value: 38.352000000000004
- type: mrr_at_100
value: 39.188
- type: mrr_at_1000
value: 39.247
- type: mrr_at_3
value: 35.876000000000005
- type: mrr_at_5
value: 37.401
- type: ndcg_at_1
value: 29.492
- type: ndcg_at_10
value: 41.239
- type: ndcg_at_100
value: 46.066
- type: ndcg_at_1000
value: 47.992000000000004
- type: ndcg_at_3
value: 36.11
- type: ndcg_at_5
value: 38.772
- type: precision_at_1
value: 29.492
- type: precision_at_10
value: 6.260000000000001
- type: precision_at_100
value: 0.914
- type: precision_at_1000
value: 0.11100000000000002
- type: precision_at_3
value: 15.104000000000001
- type: precision_at_5
value: 10.644
- type: recall_at_1
value: 27.27
- type: recall_at_10
value: 54.589
- type: recall_at_100
value: 76.70700000000001
- type: recall_at_1000
value: 91.158
- type: recall_at_3
value: 40.974
- type: recall_at_5
value: 47.327000000000005
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackMathematicaRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 17.848
- type: map_at_10
value: 26.207
- type: map_at_100
value: 27.478
- type: map_at_1000
value: 27.602
- type: map_at_3
value: 23.405
- type: map_at_5
value: 24.98
- type: mrr_at_1
value: 21.891
- type: mrr_at_10
value: 31.041999999999998
- type: mrr_at_100
value: 32.092
- type: mrr_at_1000
value: 32.151999999999994
- type: mrr_at_3
value: 28.358
- type: mrr_at_5
value: 29.969
- type: ndcg_at_1
value: 21.891
- type: ndcg_at_10
value: 31.585
- type: ndcg_at_100
value: 37.531
- type: ndcg_at_1000
value: 40.256
- type: ndcg_at_3
value: 26.508
- type: ndcg_at_5
value: 28.894
- type: precision_at_1
value: 21.891
- type: precision_at_10
value: 5.795999999999999
- type: precision_at_100
value: 0.9990000000000001
- type: precision_at_1000
value: 0.13799999999999998
- type: precision_at_3
value: 12.769
- type: precision_at_5
value: 9.279
- type: recall_at_1
value: 17.848
- type: recall_at_10
value: 43.452
- type: recall_at_100
value: 69.216
- type: recall_at_1000
value: 88.102
- type: recall_at_3
value: 29.18
- type: recall_at_5
value: 35.347
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackPhysicsRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 30.94
- type: map_at_10
value: 41.248000000000005
- type: map_at_100
value: 42.495
- type: map_at_1000
value: 42.602000000000004
- type: map_at_3
value: 37.939
- type: map_at_5
value: 39.924
- type: mrr_at_1
value: 37.824999999999996
- type: mrr_at_10
value: 47.041
- type: mrr_at_100
value: 47.83
- type: mrr_at_1000
value: 47.878
- type: mrr_at_3
value: 44.466
- type: mrr_at_5
value: 46.111999999999995
- type: ndcg_at_1
value: 37.824999999999996
- type: ndcg_at_10
value: 47.223
- type: ndcg_at_100
value: 52.394
- type: ndcg_at_1000
value: 54.432
- type: ndcg_at_3
value: 42.032000000000004
- type: ndcg_at_5
value: 44.772
- type: precision_at_1
value: 37.824999999999996
- type: precision_at_10
value: 8.393
- type: precision_at_100
value: 1.2890000000000001
- type: precision_at_1000
value: 0.164
- type: precision_at_3
value: 19.698
- type: precision_at_5
value: 14.013
- type: recall_at_1
value: 30.94
- type: recall_at_10
value: 59.316
- type: recall_at_100
value: 80.783
- type: recall_at_1000
value: 94.15400000000001
- type: recall_at_3
value: 44.712
- type: recall_at_5
value: 51.932
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackProgrammersRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 27.104
- type: map_at_10
value: 36.675999999999995
- type: map_at_100
value: 38.076
- type: map_at_1000
value: 38.189
- type: map_at_3
value: 33.733999999999995
- type: map_at_5
value: 35.287
- type: mrr_at_1
value: 33.904
- type: mrr_at_10
value: 42.55
- type: mrr_at_100
value: 43.434
- type: mrr_at_1000
value: 43.494
- type: mrr_at_3
value: 40.126
- type: mrr_at_5
value: 41.473
- type: ndcg_at_1
value: 33.904
- type: ndcg_at_10
value: 42.414
- type: ndcg_at_100
value: 48.203
- type: ndcg_at_1000
value: 50.437
- type: ndcg_at_3
value: 37.633
- type: ndcg_at_5
value: 39.67
- type: precision_at_1
value: 33.904
- type: precision_at_10
value: 7.82
- type: precision_at_100
value: 1.2409999999999999
- type: precision_at_1000
value: 0.159
- type: precision_at_3
value: 17.884
- type: precision_at_5
value: 12.648000000000001
- type: recall_at_1
value: 27.104
- type: recall_at_10
value: 53.563
- type: recall_at_100
value: 78.557
- type: recall_at_1000
value: 93.533
- type: recall_at_3
value: 39.92
- type: recall_at_5
value: 45.457
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 27.707749999999997
- type: map_at_10
value: 36.961
- type: map_at_100
value: 38.158833333333334
- type: map_at_1000
value: 38.270333333333326
- type: map_at_3
value: 34.07183333333334
- type: map_at_5
value: 35.69533333333334
- type: mrr_at_1
value: 32.81875
- type: mrr_at_10
value: 41.293
- type: mrr_at_100
value: 42.116499999999995
- type: mrr_at_1000
value: 42.170249999999996
- type: mrr_at_3
value: 38.83983333333333
- type: mrr_at_5
value: 40.29775
- type: ndcg_at_1
value: 32.81875
- type: ndcg_at_10
value: 42.355
- type: ndcg_at_100
value: 47.41374999999999
- type: ndcg_at_1000
value: 49.5805
- type: ndcg_at_3
value: 37.52825
- type: ndcg_at_5
value: 39.83266666666667
- type: precision_at_1
value: 32.81875
- type: precision_at_10
value: 7.382416666666666
- type: precision_at_100
value: 1.1640833333333334
- type: precision_at_1000
value: 0.15383333333333335
- type: precision_at_3
value: 17.134166666666665
- type: precision_at_5
value: 12.174833333333336
- type: recall_at_1
value: 27.707749999999997
- type: recall_at_10
value: 53.945
- type: recall_at_100
value: 76.191
- type: recall_at_1000
value: 91.101
- type: recall_at_3
value: 40.39083333333334
- type: recall_at_5
value: 46.40083333333333
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackStatsRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 26.482
- type: map_at_10
value: 33.201
- type: map_at_100
value: 34.107
- type: map_at_1000
value: 34.197
- type: map_at_3
value: 31.174000000000003
- type: map_at_5
value: 32.279
- type: mrr_at_1
value: 29.908
- type: mrr_at_10
value: 36.235
- type: mrr_at_100
value: 37.04
- type: mrr_at_1000
value: 37.105
- type: mrr_at_3
value: 34.355999999999995
- type: mrr_at_5
value: 35.382999999999996
- type: ndcg_at_1
value: 29.908
- type: ndcg_at_10
value: 37.325
- type: ndcg_at_100
value: 41.795
- type: ndcg_at_1000
value: 44.105
- type: ndcg_at_3
value: 33.555
- type: ndcg_at_5
value: 35.266999999999996
- type: precision_at_1
value: 29.908
- type: precision_at_10
value: 5.721
- type: precision_at_100
value: 0.8630000000000001
- type: precision_at_1000
value: 0.11299999999999999
- type: precision_at_3
value: 14.008000000000001
- type: precision_at_5
value: 9.754999999999999
- type: recall_at_1
value: 26.482
- type: recall_at_10
value: 47.072
- type: recall_at_100
value: 67.27
- type: recall_at_1000
value: 84.371
- type: recall_at_3
value: 36.65
- type: recall_at_5
value: 40.774
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackTexRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 18.815
- type: map_at_10
value: 26.369999999999997
- type: map_at_100
value: 27.458
- type: map_at_1000
value: 27.588
- type: map_at_3
value: 23.990000000000002
- type: map_at_5
value: 25.345000000000002
- type: mrr_at_1
value: 22.953000000000003
- type: mrr_at_10
value: 30.342999999999996
- type: mrr_at_100
value: 31.241000000000003
- type: mrr_at_1000
value: 31.319000000000003
- type: mrr_at_3
value: 28.16
- type: mrr_at_5
value: 29.406
- type: ndcg_at_1
value: 22.953000000000003
- type: ndcg_at_10
value: 31.151
- type: ndcg_at_100
value: 36.309000000000005
- type: ndcg_at_1000
value: 39.227000000000004
- type: ndcg_at_3
value: 26.921
- type: ndcg_at_5
value: 28.938000000000002
- type: precision_at_1
value: 22.953000000000003
- type: precision_at_10
value: 5.602
- type: precision_at_100
value: 0.9530000000000001
- type: precision_at_1000
value: 0.13899999999999998
- type: precision_at_3
value: 12.606
- type: precision_at_5
value: 9.119
- type: recall_at_1
value: 18.815
- type: recall_at_10
value: 41.574
- type: recall_at_100
value: 64.84400000000001
- type: recall_at_1000
value: 85.406
- type: recall_at_3
value: 29.694
- type: recall_at_5
value: 34.935
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackUnixRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 27.840999999999998
- type: map_at_10
value: 36.797999999999995
- type: map_at_100
value: 37.993
- type: map_at_1000
value: 38.086999999999996
- type: map_at_3
value: 34.050999999999995
- type: map_at_5
value: 35.379
- type: mrr_at_1
value: 32.649
- type: mrr_at_10
value: 41.025
- type: mrr_at_100
value: 41.878
- type: mrr_at_1000
value: 41.929
- type: mrr_at_3
value: 38.573
- type: mrr_at_5
value: 39.715
- type: ndcg_at_1
value: 32.649
- type: ndcg_at_10
value: 42.142
- type: ndcg_at_100
value: 47.558
- type: ndcg_at_1000
value: 49.643
- type: ndcg_at_3
value: 37.12
- type: ndcg_at_5
value: 38.983000000000004
- type: precision_at_1
value: 32.649
- type: precision_at_10
value: 7.08
- type: precision_at_100
value: 1.1039999999999999
- type: precision_at_1000
value: 0.13899999999999998
- type: precision_at_3
value: 16.698
- type: precision_at_5
value: 11.511000000000001
- type: recall_at_1
value: 27.840999999999998
- type: recall_at_10
value: 54.245
- type: recall_at_100
value: 77.947
- type: recall_at_1000
value: 92.36999999999999
- type: recall_at_3
value: 40.146
- type: recall_at_5
value: 44.951
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackWebmastersRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 26.529000000000003
- type: map_at_10
value: 35.010000000000005
- type: map_at_100
value: 36.647
- type: map_at_1000
value: 36.857
- type: map_at_3
value: 31.968000000000004
- type: map_at_5
value: 33.554
- type: mrr_at_1
value: 31.818
- type: mrr_at_10
value: 39.550999999999995
- type: mrr_at_100
value: 40.54
- type: mrr_at_1000
value: 40.596
- type: mrr_at_3
value: 36.726
- type: mrr_at_5
value: 38.416
- type: ndcg_at_1
value: 31.818
- type: ndcg_at_10
value: 40.675
- type: ndcg_at_100
value: 46.548
- type: ndcg_at_1000
value: 49.126
- type: ndcg_at_3
value: 35.829
- type: ndcg_at_5
value: 38.0
- type: precision_at_1
value: 31.818
- type: precision_at_10
value: 7.826
- type: precision_at_100
value: 1.538
- type: precision_at_1000
value: 0.24
- type: precision_at_3
value: 16.601
- type: precision_at_5
value: 12.095
- type: recall_at_1
value: 26.529000000000003
- type: recall_at_10
value: 51.03
- type: recall_at_100
value: 77.556
- type: recall_at_1000
value: 93.804
- type: recall_at_3
value: 36.986000000000004
- type: recall_at_5
value: 43.096000000000004
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackWordpressRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 23.480999999999998
- type: map_at_10
value: 30.817
- type: map_at_100
value: 31.838
- type: map_at_1000
value: 31.932
- type: map_at_3
value: 28.011999999999997
- type: map_at_5
value: 29.668
- type: mrr_at_1
value: 25.323
- type: mrr_at_10
value: 33.072
- type: mrr_at_100
value: 33.926
- type: mrr_at_1000
value: 33.993
- type: mrr_at_3
value: 30.436999999999998
- type: mrr_at_5
value: 32.092
- type: ndcg_at_1
value: 25.323
- type: ndcg_at_10
value: 35.514
- type: ndcg_at_100
value: 40.489000000000004
- type: ndcg_at_1000
value: 42.908
- type: ndcg_at_3
value: 30.092000000000002
- type: ndcg_at_5
value: 32.989000000000004
- type: precision_at_1
value: 25.323
- type: precision_at_10
value: 5.545
- type: precision_at_100
value: 0.861
- type: precision_at_1000
value: 0.117
- type: precision_at_3
value: 12.446
- type: precision_at_5
value: 9.131
- type: recall_at_1
value: 23.480999999999998
- type: recall_at_10
value: 47.825
- type: recall_at_100
value: 70.652
- type: recall_at_1000
value: 88.612
- type: recall_at_3
value: 33.537
- type: recall_at_5
value: 40.542
- task:
type: Retrieval
dataset:
type: climate-fever
name: MTEB ClimateFEVER
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 13.333999999999998
- type: map_at_10
value: 22.524
- type: map_at_100
value: 24.506
- type: map_at_1000
value: 24.715
- type: map_at_3
value: 19.022
- type: map_at_5
value: 20.693
- type: mrr_at_1
value: 29.186
- type: mrr_at_10
value: 41.22
- type: mrr_at_100
value: 42.16
- type: mrr_at_1000
value: 42.192
- type: mrr_at_3
value: 38.013000000000005
- type: mrr_at_5
value: 39.704
- type: ndcg_at_1
value: 29.186
- type: ndcg_at_10
value: 31.167
- type: ndcg_at_100
value: 38.879000000000005
- type: ndcg_at_1000
value: 42.376000000000005
- type: ndcg_at_3
value: 25.817
- type: ndcg_at_5
value: 27.377000000000002
- type: precision_at_1
value: 29.186
- type: precision_at_10
value: 9.693999999999999
- type: precision_at_100
value: 1.8030000000000002
- type: precision_at_1000
value: 0.246
- type: precision_at_3
value: 19.11
- type: precision_at_5
value: 14.344999999999999
- type: recall_at_1
value: 13.333999999999998
- type: recall_at_10
value: 37.092000000000006
- type: recall_at_100
value: 63.651
- type: recall_at_1000
value: 83.05
- type: recall_at_3
value: 23.74
- type: recall_at_5
value: 28.655
- task:
type: Retrieval
dataset:
type: dbpedia-entity
name: MTEB DBPedia
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 9.151
- type: map_at_10
value: 19.653000000000002
- type: map_at_100
value: 28.053
- type: map_at_1000
value: 29.709000000000003
- type: map_at_3
value: 14.191
- type: map_at_5
value: 16.456
- type: mrr_at_1
value: 66.25
- type: mrr_at_10
value: 74.4
- type: mrr_at_100
value: 74.715
- type: mrr_at_1000
value: 74.726
- type: mrr_at_3
value: 72.417
- type: mrr_at_5
value: 73.667
- type: ndcg_at_1
value: 54.25
- type: ndcg_at_10
value: 40.77
- type: ndcg_at_100
value: 46.359
- type: ndcg_at_1000
value: 54.193000000000005
- type: ndcg_at_3
value: 44.832
- type: ndcg_at_5
value: 42.63
- type: precision_at_1
value: 66.25
- type: precision_at_10
value: 32.175
- type: precision_at_100
value: 10.668
- type: precision_at_1000
value: 2.067
- type: precision_at_3
value: 47.667
- type: precision_at_5
value: 41.3
- type: recall_at_1
value: 9.151
- type: recall_at_10
value: 25.003999999999998
- type: recall_at_100
value: 52.976
- type: recall_at_1000
value: 78.315
- type: recall_at_3
value: 15.487
- type: recall_at_5
value: 18.999
- task:
type: Classification
dataset:
type: mteb/emotion
name: MTEB EmotionClassification
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 51.89999999999999
- type: f1
value: 46.47777925067403
- task:
type: Retrieval
dataset:
type: fever
name: MTEB FEVER
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 73.706
- type: map_at_10
value: 82.423
- type: map_at_100
value: 82.67999999999999
- type: map_at_1000
value: 82.694
- type: map_at_3
value: 81.328
- type: map_at_5
value: 82.001
- type: mrr_at_1
value: 79.613
- type: mrr_at_10
value: 87.07000000000001
- type: mrr_at_100
value: 87.169
- type: mrr_at_1000
value: 87.17
- type: mrr_at_3
value: 86.404
- type: mrr_at_5
value: 86.856
- type: ndcg_at_1
value: 79.613
- type: ndcg_at_10
value: 86.289
- type: ndcg_at_100
value: 87.201
- type: ndcg_at_1000
value: 87.428
- type: ndcg_at_3
value: 84.625
- type: ndcg_at_5
value: 85.53699999999999
- type: precision_at_1
value: 79.613
- type: precision_at_10
value: 10.399
- type: precision_at_100
value: 1.1079999999999999
- type: precision_at_1000
value: 0.11499999999999999
- type: precision_at_3
value: 32.473
- type: precision_at_5
value: 20.132
- type: recall_at_1
value: 73.706
- type: recall_at_10
value: 93.559
- type: recall_at_100
value: 97.188
- type: recall_at_1000
value: 98.555
- type: recall_at_3
value: 88.98700000000001
- type: recall_at_5
value: 91.373
- task:
type: Retrieval
dataset:
type: fiqa
name: MTEB FiQA2018
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 19.841
- type: map_at_10
value: 32.643
- type: map_at_100
value: 34.575
- type: map_at_1000
value: 34.736
- type: map_at_3
value: 28.317999999999998
- type: map_at_5
value: 30.964000000000002
- type: mrr_at_1
value: 39.660000000000004
- type: mrr_at_10
value: 48.620000000000005
- type: mrr_at_100
value: 49.384
- type: mrr_at_1000
value: 49.415
- type: mrr_at_3
value: 45.988
- type: mrr_at_5
value: 47.361
- type: ndcg_at_1
value: 39.660000000000004
- type: ndcg_at_10
value: 40.646
- type: ndcg_at_100
value: 47.657
- type: ndcg_at_1000
value: 50.428
- type: ndcg_at_3
value: 36.689
- type: ndcg_at_5
value: 38.211
- type: precision_at_1
value: 39.660000000000004
- type: precision_at_10
value: 11.235000000000001
- type: precision_at_100
value: 1.8530000000000002
- type: precision_at_1000
value: 0.23600000000000002
- type: precision_at_3
value: 24.587999999999997
- type: precision_at_5
value: 18.395
- type: recall_at_1
value: 19.841
- type: recall_at_10
value: 48.135
- type: recall_at_100
value: 74.224
- type: recall_at_1000
value: 90.826
- type: recall_at_3
value: 33.536
- type: recall_at_5
value: 40.311
- task:
type: Retrieval
dataset:
type: hotpotqa
name: MTEB HotpotQA
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 40.358
- type: map_at_10
value: 64.497
- type: map_at_100
value: 65.362
- type: map_at_1000
value: 65.41900000000001
- type: map_at_3
value: 61.06700000000001
- type: map_at_5
value: 63.317
- type: mrr_at_1
value: 80.716
- type: mrr_at_10
value: 86.10799999999999
- type: mrr_at_100
value: 86.265
- type: mrr_at_1000
value: 86.27
- type: mrr_at_3
value: 85.271
- type: mrr_at_5
value: 85.82499999999999
- type: ndcg_at_1
value: 80.716
- type: ndcg_at_10
value: 72.597
- type: ndcg_at_100
value: 75.549
- type: ndcg_at_1000
value: 76.61
- type: ndcg_at_3
value: 67.874
- type: ndcg_at_5
value: 70.655
- type: precision_at_1
value: 80.716
- type: precision_at_10
value: 15.148
- type: precision_at_100
value: 1.745
- type: precision_at_1000
value: 0.188
- type: precision_at_3
value: 43.597
- type: precision_at_5
value: 28.351
- type: recall_at_1
value: 40.358
- type: recall_at_10
value: 75.739
- type: recall_at_100
value: 87.259
- type: recall_at_1000
value: 94.234
- type: recall_at_3
value: 65.39500000000001
- type: recall_at_5
value: 70.878
- task:
type: Classification
dataset:
type: mteb/imdb
name: MTEB ImdbClassification
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 90.80799999999998
- type: ap
value: 86.81350378180757
- type: f1
value: 90.79901248314215
- task:
type: Retrieval
dataset:
type: msmarco
name: MTEB MSMARCO
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 22.096
- type: map_at_10
value: 34.384
- type: map_at_100
value: 35.541
- type: map_at_1000
value: 35.589999999999996
- type: map_at_3
value: 30.496000000000002
- type: map_at_5
value: 32.718
- type: mrr_at_1
value: 22.750999999999998
- type: mrr_at_10
value: 35.024
- type: mrr_at_100
value: 36.125
- type: mrr_at_1000
value: 36.168
- type: mrr_at_3
value: 31.225
- type: mrr_at_5
value: 33.416000000000004
- type: ndcg_at_1
value: 22.750999999999998
- type: ndcg_at_10
value: 41.351
- type: ndcg_at_100
value: 46.92
- type: ndcg_at_1000
value: 48.111
- type: ndcg_at_3
value: 33.439
- type: ndcg_at_5
value: 37.407000000000004
- type: precision_at_1
value: 22.750999999999998
- type: precision_at_10
value: 6.564
- type: precision_at_100
value: 0.935
- type: precision_at_1000
value: 0.104
- type: precision_at_3
value: 14.288
- type: precision_at_5
value: 10.581999999999999
- type: recall_at_1
value: 22.096
- type: recall_at_10
value: 62.771
- type: recall_at_100
value: 88.529
- type: recall_at_1000
value: 97.55
- type: recall_at_3
value: 41.245
- type: recall_at_5
value: 50.788
- task:
type: Classification
dataset:
type: mteb/mtop_domain
name: MTEB MTOPDomainClassification (en)
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 94.16780665754673
- type: f1
value: 93.96331194859894
- task:
type: Classification
dataset:
type: mteb/mtop_intent
name: MTEB MTOPIntentClassification (en)
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 76.90606475148198
- type: f1
value: 58.58344986604187
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (en)
config: en
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 76.14660390047075
- type: f1
value: 74.31533923533614
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (en)
config: en
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 80.16139878950908
- type: f1
value: 80.18532656824924
- task:
type: Clustering
dataset:
type: mteb/medrxiv-clustering-p2p
name: MTEB MedrxivClusteringP2P
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: v_measure
value: 32.949880906135085
- task:
type: Clustering
dataset:
type: mteb/medrxiv-clustering-s2s
name: MTEB MedrxivClusteringS2S
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: v_measure
value: 31.56300351524862
- task:
type: Reranking
dataset:
type: mteb/mind_small
name: MTEB MindSmallReranking
config: default
split: test
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
metrics:
- type: map
value: 31.196521894371315
- type: mrr
value: 32.22644231694389
- task:
type: Retrieval
dataset:
type: nfcorpus
name: MTEB NFCorpus
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 6.783
- type: map_at_10
value: 14.549000000000001
- type: map_at_100
value: 18.433
- type: map_at_1000
value: 19.949
- type: map_at_3
value: 10.936
- type: map_at_5
value: 12.514
- type: mrr_at_1
value: 47.368
- type: mrr_at_10
value: 56.42
- type: mrr_at_100
value: 56.908
- type: mrr_at_1000
value: 56.95
- type: mrr_at_3
value: 54.283
- type: mrr_at_5
value: 55.568
- type: ndcg_at_1
value: 45.666000000000004
- type: ndcg_at_10
value: 37.389
- type: ndcg_at_100
value: 34.253
- type: ndcg_at_1000
value: 43.059999999999995
- type: ndcg_at_3
value: 42.725
- type: ndcg_at_5
value: 40.193
- type: precision_at_1
value: 47.368
- type: precision_at_10
value: 27.988000000000003
- type: precision_at_100
value: 8.672
- type: precision_at_1000
value: 2.164
- type: precision_at_3
value: 40.248
- type: precision_at_5
value: 34.737
- type: recall_at_1
value: 6.783
- type: recall_at_10
value: 17.838
- type: recall_at_100
value: 33.672000000000004
- type: recall_at_1000
value: 66.166
- type: recall_at_3
value: 11.849
- type: recall_at_5
value: 14.205000000000002
- task:
type: Retrieval
dataset:
type: nq
name: MTEB NQ
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 31.698999999999998
- type: map_at_10
value: 46.556
- type: map_at_100
value: 47.652
- type: map_at_1000
value: 47.68
- type: map_at_3
value: 42.492000000000004
- type: map_at_5
value: 44.763999999999996
- type: mrr_at_1
value: 35.747
- type: mrr_at_10
value: 49.242999999999995
- type: mrr_at_100
value: 50.052
- type: mrr_at_1000
value: 50.068
- type: mrr_at_3
value: 45.867000000000004
- type: mrr_at_5
value: 47.778999999999996
- type: ndcg_at_1
value: 35.717999999999996
- type: ndcg_at_10
value: 54.14600000000001
- type: ndcg_at_100
value: 58.672999999999995
- type: ndcg_at_1000
value: 59.279
- type: ndcg_at_3
value: 46.407
- type: ndcg_at_5
value: 50.181
- type: precision_at_1
value: 35.717999999999996
- type: precision_at_10
value: 8.844000000000001
- type: precision_at_100
value: 1.139
- type: precision_at_1000
value: 0.12
- type: precision_at_3
value: 20.993000000000002
- type: precision_at_5
value: 14.791000000000002
- type: recall_at_1
value: 31.698999999999998
- type: recall_at_10
value: 74.693
- type: recall_at_100
value: 94.15299999999999
- type: recall_at_1000
value: 98.585
- type: recall_at_3
value: 54.388999999999996
- type: recall_at_5
value: 63.08200000000001
- task:
type: Retrieval
dataset:
type: quora
name: MTEB QuoraRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 71.283
- type: map_at_10
value: 85.24000000000001
- type: map_at_100
value: 85.882
- type: map_at_1000
value: 85.897
- type: map_at_3
value: 82.326
- type: map_at_5
value: 84.177
- type: mrr_at_1
value: 82.21000000000001
- type: mrr_at_10
value: 88.228
- type: mrr_at_100
value: 88.32
- type: mrr_at_1000
value: 88.32
- type: mrr_at_3
value: 87.323
- type: mrr_at_5
value: 87.94800000000001
- type: ndcg_at_1
value: 82.17999999999999
- type: ndcg_at_10
value: 88.9
- type: ndcg_at_100
value: 90.079
- type: ndcg_at_1000
value: 90.158
- type: ndcg_at_3
value: 86.18299999999999
- type: ndcg_at_5
value: 87.71799999999999
- type: precision_at_1
value: 82.17999999999999
- type: precision_at_10
value: 13.464
- type: precision_at_100
value: 1.533
- type: precision_at_1000
value: 0.157
- type: precision_at_3
value: 37.693
- type: precision_at_5
value: 24.792
- type: recall_at_1
value: 71.283
- type: recall_at_10
value: 95.742
- type: recall_at_100
value: 99.67200000000001
- type: recall_at_1000
value: 99.981
- type: recall_at_3
value: 87.888
- type: recall_at_5
value: 92.24
- task:
type: Clustering
dataset:
type: mteb/reddit-clustering
name: MTEB RedditClustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: v_measure
value: 56.24267063669042
- task:
type: Clustering
dataset:
type: mteb/reddit-clustering-p2p
name: MTEB RedditClusteringP2P
config: default
split: test
revision: 282350215ef01743dc01b456c7f5241fa8937f16
metrics:
- type: v_measure
value: 62.88056988932578
- task:
type: Retrieval
dataset:
type: scidocs
name: MTEB SCIDOCS
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 4.903
- type: map_at_10
value: 13.202
- type: map_at_100
value: 15.5
- type: map_at_1000
value: 15.870999999999999
- type: map_at_3
value: 9.407
- type: map_at_5
value: 11.238
- type: mrr_at_1
value: 24.2
- type: mrr_at_10
value: 35.867
- type: mrr_at_100
value: 37.001
- type: mrr_at_1000
value: 37.043
- type: mrr_at_3
value: 32.5
- type: mrr_at_5
value: 34.35
- type: ndcg_at_1
value: 24.2
- type: ndcg_at_10
value: 21.731
- type: ndcg_at_100
value: 30.7
- type: ndcg_at_1000
value: 36.618
- type: ndcg_at_3
value: 20.72
- type: ndcg_at_5
value: 17.954
- type: precision_at_1
value: 24.2
- type: precision_at_10
value: 11.33
- type: precision_at_100
value: 2.4410000000000003
- type: precision_at_1000
value: 0.386
- type: precision_at_3
value: 19.667
- type: precision_at_5
value: 15.86
- type: recall_at_1
value: 4.903
- type: recall_at_10
value: 22.962
- type: recall_at_100
value: 49.563
- type: recall_at_1000
value: 78.238
- type: recall_at_3
value: 11.953
- type: recall_at_5
value: 16.067999999999998
- task:
type: STS
dataset:
type: mteb/sickr-sts
name: MTEB SICK-R
config: default
split: test
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
metrics:
- type: cos_sim_pearson
value: 84.12694254604078
- type: cos_sim_spearman
value: 80.30141815181918
- type: euclidean_pearson
value: 81.34015449877128
- type: euclidean_spearman
value: 80.13984197010849
- type: manhattan_pearson
value: 81.31767068124086
- type: manhattan_spearman
value: 80.11720513114103
- task:
type: STS
dataset:
type: mteb/sts12-sts
name: MTEB STS12
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: cos_sim_pearson
value: 86.13112984010417
- type: cos_sim_spearman
value: 78.03063573402875
- type: euclidean_pearson
value: 83.51928418844804
- type: euclidean_spearman
value: 78.4045235411144
- type: manhattan_pearson
value: 83.49981637388689
- type: manhattan_spearman
value: 78.4042575139372
- task:
type: STS
dataset:
type: mteb/sts13-sts
name: MTEB STS13
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: cos_sim_pearson
value: 82.50327987379504
- type: cos_sim_spearman
value: 84.18556767756205
- type: euclidean_pearson
value: 82.69684424327679
- type: euclidean_spearman
value: 83.5368106038335
- type: manhattan_pearson
value: 82.57967581007374
- type: manhattan_spearman
value: 83.43009053133697
- task:
type: STS
dataset:
type: mteb/sts14-sts
name: MTEB STS14
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: cos_sim_pearson
value: 82.50756863007814
- type: cos_sim_spearman
value: 82.27204331279108
- type: euclidean_pearson
value: 81.39535251429741
- type: euclidean_spearman
value: 81.84386626336239
- type: manhattan_pearson
value: 81.34281737280695
- type: manhattan_spearman
value: 81.81149375673166
- task:
type: STS
dataset:
type: mteb/sts15-sts
name: MTEB STS15
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: cos_sim_pearson
value: 86.8727714856726
- type: cos_sim_spearman
value: 87.95738287792312
- type: euclidean_pearson
value: 86.62920602795887
- type: euclidean_spearman
value: 87.05207355381243
- type: manhattan_pearson
value: 86.53587918472225
- type: manhattan_spearman
value: 86.95382961029586
- task:
type: STS
dataset:
type: mteb/sts16-sts
name: MTEB STS16
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: cos_sim_pearson
value: 83.52240359769479
- type: cos_sim_spearman
value: 85.47685776238286
- type: euclidean_pearson
value: 84.25815333483058
- type: euclidean_spearman
value: 85.27415639683198
- type: manhattan_pearson
value: 84.29127757025637
- type: manhattan_spearman
value: 85.30226224917351
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (en-en)
config: en-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 86.42501708915708
- type: cos_sim_spearman
value: 86.42276182795041
- type: euclidean_pearson
value: 86.5408207354761
- type: euclidean_spearman
value: 85.46096321750838
- type: manhattan_pearson
value: 86.54177303026881
- type: manhattan_spearman
value: 85.50313151916117
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (en)
config: en
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 64.86521089250766
- type: cos_sim_spearman
value: 65.94868540323003
- type: euclidean_pearson
value: 67.16569626533084
- type: euclidean_spearman
value: 66.37667004134917
- type: manhattan_pearson
value: 67.1482365102333
- type: manhattan_spearman
value: 66.53240122580029
- task:
type: STS
dataset:
type: mteb/stsbenchmark-sts
name: MTEB STSBenchmark
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: cos_sim_pearson
value: 84.64746265365318
- type: cos_sim_spearman
value: 86.41888825906786
- type: euclidean_pearson
value: 85.27453642725811
- type: euclidean_spearman
value: 85.94095796602544
- type: manhattan_pearson
value: 85.28643660505334
- type: manhattan_spearman
value: 85.95028003260744
- task:
type: Reranking
dataset:
type: mteb/scidocs-reranking
name: MTEB SciDocsRR
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: map
value: 87.48903153618527
- type: mrr
value: 96.41081503826601
- task:
type: Retrieval
dataset:
type: scifact
name: MTEB SciFact
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 58.594
- type: map_at_10
value: 69.296
- type: map_at_100
value: 69.782
- type: map_at_1000
value: 69.795
- type: map_at_3
value: 66.23
- type: map_at_5
value: 68.293
- type: mrr_at_1
value: 61.667
- type: mrr_at_10
value: 70.339
- type: mrr_at_100
value: 70.708
- type: mrr_at_1000
value: 70.722
- type: mrr_at_3
value: 68.0
- type: mrr_at_5
value: 69.56700000000001
- type: ndcg_at_1
value: 61.667
- type: ndcg_at_10
value: 74.039
- type: ndcg_at_100
value: 76.103
- type: ndcg_at_1000
value: 76.47800000000001
- type: ndcg_at_3
value: 68.967
- type: ndcg_at_5
value: 71.96900000000001
- type: precision_at_1
value: 61.667
- type: precision_at_10
value: 9.866999999999999
- type: precision_at_100
value: 1.097
- type: precision_at_1000
value: 0.11299999999999999
- type: precision_at_3
value: 27.111
- type: precision_at_5
value: 18.2
- type: recall_at_1
value: 58.594
- type: recall_at_10
value: 87.422
- type: recall_at_100
value: 96.667
- type: recall_at_1000
value: 99.667
- type: recall_at_3
value: 74.217
- type: recall_at_5
value: 81.539
- task:
type: PairClassification
dataset:
type: mteb/sprintduplicatequestions-pairclassification
name: MTEB SprintDuplicateQuestions
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cos_sim_accuracy
value: 99.85049504950496
- type: cos_sim_ap
value: 96.33111544137081
- type: cos_sim_f1
value: 92.35443037974684
- type: cos_sim_precision
value: 93.53846153846153
- type: cos_sim_recall
value: 91.2
- type: dot_accuracy
value: 99.82376237623762
- type: dot_ap
value: 95.38082527310888
- type: dot_f1
value: 90.90909090909092
- type: dot_precision
value: 92.90187891440502
- type: dot_recall
value: 89.0
- type: euclidean_accuracy
value: 99.84851485148515
- type: euclidean_ap
value: 96.32316003996347
- type: euclidean_f1
value: 92.2071392659628
- type: euclidean_precision
value: 92.71991911021233
- type: euclidean_recall
value: 91.7
- type: manhattan_accuracy
value: 99.84851485148515
- type: manhattan_ap
value: 96.3655668249217
- type: manhattan_f1
value: 92.18356026222895
- type: manhattan_precision
value: 92.98067141403867
- type: manhattan_recall
value: 91.4
- type: max_accuracy
value: 99.85049504950496
- type: max_ap
value: 96.3655668249217
- type: max_f1
value: 92.35443037974684
- task:
type: Clustering
dataset:
type: mteb/stackexchange-clustering
name: MTEB StackExchangeClustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: v_measure
value: 65.94861371629051
- task:
type: Clustering
dataset:
type: mteb/stackexchange-clustering-p2p
name: MTEB StackExchangeClusteringP2P
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: v_measure
value: 35.009430451385
- task:
type: Reranking
dataset:
type: mteb/stackoverflowdupquestions-reranking
name: MTEB StackOverflowDupQuestions
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: map
value: 54.61164066427969
- type: mrr
value: 55.49710603938544
- task:
type: Summarization
dataset:
type: mteb/summeval
name: MTEB SummEval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: cos_sim_pearson
value: 30.622620124907662
- type: cos_sim_spearman
value: 31.0678351356163
- type: dot_pearson
value: 30.863727693306814
- type: dot_spearman
value: 31.230306567021255
- task:
type: Retrieval
dataset:
type: trec-covid
name: MTEB TRECCOVID
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 0.22
- type: map_at_10
value: 2.011
- type: map_at_100
value: 10.974
- type: map_at_1000
value: 25.819
- type: map_at_3
value: 0.6649999999999999
- type: map_at_5
value: 1.076
- type: mrr_at_1
value: 86.0
- type: mrr_at_10
value: 91.8
- type: mrr_at_100
value: 91.8
- type: mrr_at_1000
value: 91.8
- type: mrr_at_3
value: 91.0
- type: mrr_at_5
value: 91.8
- type: ndcg_at_1
value: 82.0
- type: ndcg_at_10
value: 78.07300000000001
- type: ndcg_at_100
value: 58.231
- type: ndcg_at_1000
value: 51.153000000000006
- type: ndcg_at_3
value: 81.123
- type: ndcg_at_5
value: 81.059
- type: precision_at_1
value: 86.0
- type: precision_at_10
value: 83.0
- type: precision_at_100
value: 59.38
- type: precision_at_1000
value: 22.55
- type: precision_at_3
value: 87.333
- type: precision_at_5
value: 86.8
- type: recall_at_1
value: 0.22
- type: recall_at_10
value: 2.2079999999999997
- type: recall_at_100
value: 14.069
- type: recall_at_1000
value: 47.678
- type: recall_at_3
value: 0.7040000000000001
- type: recall_at_5
value: 1.161
- task:
type: Retrieval
dataset:
type: webis-touche2020
name: MTEB Touche2020
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 2.809
- type: map_at_10
value: 10.394
- type: map_at_100
value: 16.598
- type: map_at_1000
value: 18.142
- type: map_at_3
value: 5.572
- type: map_at_5
value: 7.1370000000000005
- type: mrr_at_1
value: 32.653
- type: mrr_at_10
value: 46.564
- type: mrr_at_100
value: 47.469
- type: mrr_at_1000
value: 47.469
- type: mrr_at_3
value: 42.177
- type: mrr_at_5
value: 44.524
- type: ndcg_at_1
value: 30.612000000000002
- type: ndcg_at_10
value: 25.701
- type: ndcg_at_100
value: 37.532
- type: ndcg_at_1000
value: 48.757
- type: ndcg_at_3
value: 28.199999999999996
- type: ndcg_at_5
value: 25.987
- type: precision_at_1
value: 32.653
- type: precision_at_10
value: 23.469
- type: precision_at_100
value: 7.9799999999999995
- type: precision_at_1000
value: 1.5350000000000001
- type: precision_at_3
value: 29.932
- type: precision_at_5
value: 26.122
- type: recall_at_1
value: 2.809
- type: recall_at_10
value: 16.887
- type: recall_at_100
value: 48.67
- type: recall_at_1000
value: 82.89699999999999
- type: recall_at_3
value: 6.521000000000001
- type: recall_at_5
value: 9.609
- task:
type: Classification
dataset:
type: mteb/toxic_conversations_50k
name: MTEB ToxicConversationsClassification
config: default
split: test
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
metrics:
- type: accuracy
value: 71.57860000000001
- type: ap
value: 13.82629211536393
- type: f1
value: 54.59860966183956
- task:
type: Classification
dataset:
type: mteb/tweet_sentiment_extraction
name: MTEB TweetSentimentExtractionClassification
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 59.38030560271647
- type: f1
value: 59.69685552567865
- task:
type: Clustering
dataset:
type: mteb/twentynewsgroups-clustering
name: MTEB TwentyNewsgroupsClustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: v_measure
value: 51.4736717043405
- task:
type: PairClassification
dataset:
type: mteb/twittersemeval2015-pairclassification
name: MTEB TwitterSemEval2015
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cos_sim_accuracy
value: 86.92853311080646
- type: cos_sim_ap
value: 77.67872502591382
- type: cos_sim_f1
value: 70.33941236068895
- type: cos_sim_precision
value: 67.63273258645884
- type: cos_sim_recall
value: 73.27176781002639
- type: dot_accuracy
value: 85.79603027954938
- type: dot_ap
value: 73.73786190233379
- type: dot_f1
value: 67.3437901774235
- type: dot_precision
value: 65.67201604814443
- type: dot_recall
value: 69.10290237467018
- type: euclidean_accuracy
value: 86.94045419324074
- type: euclidean_ap
value: 77.6687791535167
- type: euclidean_f1
value: 70.47209214023542
- type: euclidean_precision
value: 67.7207492094381
- type: euclidean_recall
value: 73.45646437994723
- type: manhattan_accuracy
value: 86.87488823985218
- type: manhattan_ap
value: 77.63373392430728
- type: manhattan_f1
value: 70.40920716112532
- type: manhattan_precision
value: 68.31265508684864
- type: manhattan_recall
value: 72.63852242744063
- type: max_accuracy
value: 86.94045419324074
- type: max_ap
value: 77.67872502591382
- type: max_f1
value: 70.47209214023542
- task:
type: PairClassification
dataset:
type: mteb/twitterurlcorpus-pairclassification
name: MTEB TwitterURLCorpus
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cos_sim_accuracy
value: 88.67155664221679
- type: cos_sim_ap
value: 85.64591703003417
- type: cos_sim_f1
value: 77.59531005352656
- type: cos_sim_precision
value: 73.60967184801382
- type: cos_sim_recall
value: 82.03726516784724
- type: dot_accuracy
value: 88.41541506578181
- type: dot_ap
value: 84.6482788957769
- type: dot_f1
value: 77.04748541466657
- type: dot_precision
value: 74.02440754931176
- type: dot_recall
value: 80.3279950723745
- type: euclidean_accuracy
value: 88.63080684596576
- type: euclidean_ap
value: 85.44570045321562
- type: euclidean_f1
value: 77.28769403336106
- type: euclidean_precision
value: 72.90600040958427
- type: euclidean_recall
value: 82.22975053895904
- type: manhattan_accuracy
value: 88.59393798269105
- type: manhattan_ap
value: 85.40271361038187
- type: manhattan_f1
value: 77.17606419344392
- type: manhattan_precision
value: 72.4447747078295
- type: manhattan_recall
value: 82.5685247921158
- type: max_accuracy
value: 88.67155664221679
- type: max_ap
value: 85.64591703003417
- type: max_f1
value: 77.59531005352656
license: mit
language:
- en
---
<h1 align="center">FlagEmbedding</h1>
<h4 align="center">
<p>
<a href=#model-list>Model List</a> |
<a href=#frequently-asked-questions>FAQ</a> |
<a href=#usage>Usage</a> |
<a href="#evaluation">Evaluation</a> |
<a href="#train">Train</a> |
<a href="#contact">Contact</a> |
<a href="#citation">Citation</a> |
<a href="#license">License</a>
<p>
</h4>
For more details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding).
If you are looking for a model that supports more languages, longer texts, and other retrieval methods, you can try using [bge-m3](https://huggingface.co/BAAI/bge-m3).
[English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md)
FlagEmbedding focuses on retrieval-augmented LLMs, consisting of the following projects currently:
- **Long-Context LLM**: [Activation Beacon](https://github.com/FlagOpen/FlagEmbedding/tree/master/Long_LLM/activation_beacon)
- **Fine-tuning of LM** : [LM-Cocktail](https://github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail)
- **Dense Retrieval**: [BGE-M3](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3), [LLM Embedder](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder), [BGE Embedding](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/baai_general_embedding)
- **Reranker Model**: [BGE Reranker](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker)
- **Benchmark**: [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB)
## News
- 1/30/2024: Release **BGE-M3**, a new member to BGE model series! M3 stands for **M**ulti-linguality (100+ languages), **M**ulti-granularities (input length up to 8192), **M**ulti-Functionality (unification of dense, lexical, multi-vec/colbert retrieval).
It is the first embedding model which supports all three retrieval methods, achieving new SOTA on multi-lingual (MIRACL) and cross-lingual (MKQA) benchmarks.
[Technical Report](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/BGE_M3/BGE_M3.pdf) and [Code](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3). :fire:
- 1/9/2024: Release [Activation-Beacon](https://github.com/FlagOpen/FlagEmbedding/tree/master/Long_LLM/activation_beacon), an effective, efficient, compatible, and low-cost (training) method to extend the context length of LLM. [Technical Report](https://arxiv.org/abs/2401.03462) :fire:
- 12/24/2023: Release **LLaRA**, a LLaMA-7B based dense retriever, leading to state-of-the-art performances on MS MARCO and BEIR. Model and code will be open-sourced. Please stay tuned. [Technical Report](https://arxiv.org/abs/2312.15503) :fire:
- 11/23/2023: Release [LM-Cocktail](https://github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail), a method to maintain general capabilities during fine-tuning by merging multiple language models. [Technical Report](https://arxiv.org/abs/2311.13534) :fire:
- 10/12/2023: Release [LLM-Embedder](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder), a unified embedding model to support diverse retrieval augmentation needs for LLMs. [Technical Report](https://arxiv.org/pdf/2310.07554.pdf)
- 09/15/2023: The [technical report](https://arxiv.org/pdf/2309.07597.pdf) and [massive training data](https://data.baai.ac.cn/details/BAAI-MTP) of BGE has been released
- 09/12/2023: New models:
- **New reranker model**: release cross-encoder models `BAAI/bge-reranker-base` and `BAAI/bge-reranker-large`, which are more powerful than embedding model. We recommend to use/fine-tune them to re-rank top-k documents returned by embedding models.
- **update embedding model**: release `bge-*-v1.5` embedding model to alleviate the issue of the similarity distribution, and enhance its retrieval ability without instruction.
<details>
<summary>More</summary>
<!-- ### More -->
- 09/07/2023: Update [fine-tune code](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md): Add script to mine hard negatives and support adding instruction during fine-tuning.
- 08/09/2023: BGE Models are integrated into **Langchain**, you can use it like [this](#using-langchain); C-MTEB **leaderboard** is [available](https://huggingface.co/spaces/mteb/leaderboard).
- 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗**
- 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!** :tada: :tada:
- 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset.
</details>
## Model List
`bge` is short for `BAAI general embedding`.
| Model | Language | | Description | query instruction for retrieval [1] |
|:-------------------------------|:--------:| :--------:| :--------:|:--------:|
| [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3) | Multilingual | [Inference](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3#usage) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3) | Multi-Functionality(dense retrieval, sparse retrieval, multi-vector(colbert)), Multi-Linguality, and Multi-Granularity(8192 tokens) | |
| [BAAI/llm-embedder](https://huggingface.co/BAAI/llm-embedder) | English | [Inference](./FlagEmbedding/llm_embedder/README.md) [Fine-tune](./FlagEmbedding/llm_embedder/README.md) | a unified embedding model to support diverse retrieval augmentation needs for LLMs | See [README](./FlagEmbedding/llm_embedder/README.md) |
| [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] | |
| [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] | |
| [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
| [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
| [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: ` |
| [BAAI/bge-large-zh-v1.5](https://huggingface.co/BAAI/bge-large-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
| [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
| [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:` |
| [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: ` |
| [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-en` | `Represent this sentence for searching relevant passages: ` |
| [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) | English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) |a small-scale model but with competitive performance | `Represent this sentence for searching relevant passages: ` |
| [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | `为这个句子生成表示以用于检索相关文章:` |
| [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-zh` | `为这个句子生成表示以用于检索相关文章:` |
| [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:` |
[1\]: If you need to search the relevant passages to a query, we suggest to add the instruction to the query; in other cases, no instruction is needed, just use the original query directly. In all cases, **no instruction** needs to be added to passages.
[2\]: Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding. To balance the accuracy and time cost, cross-encoder is widely used to re-rank top-k documents retrieved by other simple models.
For examples, use bge embedding model to retrieve top 100 relevant documents, and then use bge reranker to re-rank the top 100 document to get the final top-3 results.
All models have been uploaded to Huggingface Hub, and you can see them at https://huggingface.co/BAAI.
If you cannot open the Huggingface Hub, you also can download the models at https://model.baai.ac.cn/models .
## Frequently asked questions
<details>
<summary>1. How to fine-tune bge embedding model?</summary>
<!-- ### How to fine-tune bge embedding model? -->
Following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) to prepare data and fine-tune your model.
Some suggestions:
- Mine hard negatives following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune#hard-negatives), which can improve the retrieval performance.
- If you pre-train bge on your data, the pre-trained model cannot be directly used to calculate similarity, and it must be fine-tuned with contrastive learning before computing similarity.
- If the accuracy of the fine-tuned model is still not high, it is recommended to use/fine-tune the cross-encoder model (bge-reranker) to re-rank top-k results. Hard negatives also are needed to fine-tune reranker.
</details>
<details>
<summary>2. The similarity score between two dissimilar sentences is higher than 0.5</summary>
<!-- ### The similarity score between two dissimilar sentences is higher than 0.5 -->
**Suggest to use bge v1.5, which alleviates the issue of the similarity distribution.**
Since we finetune the models by contrastive learning with a temperature of 0.01,
the similarity distribution of the current BGE model is about in the interval \[0.6, 1\].
So a similarity score greater than 0.5 does not indicate that the two sentences are similar.
For downstream tasks, such as passage retrieval or semantic similarity,
**what matters is the relative order of the scores, not the absolute value.**
If you need to filter similar sentences based on a similarity threshold,
please select an appropriate similarity threshold based on the similarity distribution on your data (such as 0.8, 0.85, or even 0.9).
</details>
<details>
<summary>3. When does the query instruction need to be used</summary>
<!-- ### When does the query instruction need to be used -->
For the `bge-*-v1.5`, we improve its retrieval ability when not using instruction.
No instruction only has a slight degradation in retrieval performance compared with using instruction.
So you can generate embedding without instruction in all cases for convenience.
For a retrieval task that uses short queries to find long related documents,
it is recommended to add instructions for these short queries.
**The best method to decide whether to add instructions for queries is choosing the setting that achieves better performance on your task.**
In all cases, the documents/passages do not need to add the instruction.
</details>
## Usage
### Usage for Embedding Model
Here are some examples for using `bge` models with
[FlagEmbedding](#using-flagembedding), [Sentence-Transformers](#using-sentence-transformers), [Langchain](#using-langchain), or [Huggingface Transformers](#using-huggingface-transformers).
#### Using FlagEmbedding
```
pip install -U FlagEmbedding
```
If it doesn't work for you, you can see [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md) for more methods to install FlagEmbedding.
```python
from FlagEmbedding import FlagModel
sentences_1 = ["样例数据-1", "样例数据-2"]
sentences_2 = ["样例数据-3", "样例数据-4"]
model = FlagModel('BAAI/bge-large-zh-v1.5',
query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
embeddings_1 = model.encode(sentences_1)
embeddings_2 = model.encode(sentences_2)
similarity = embeddings_1 @ embeddings_2.T
print(similarity)
# for s2p(short query to long passage) retrieval task, suggest to use encode_queries() which will automatically add the instruction to each query
# corpus in retrieval task can still use encode() or encode_corpus(), since they don't need instruction
queries = ['query_1', 'query_2']
passages = ["样例文档-1", "样例文档-2"]
q_embeddings = model.encode_queries(queries)
p_embeddings = model.encode(passages)
scores = q_embeddings @ p_embeddings.T
```
For the value of the argument `query_instruction_for_retrieval`, see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list).
By default, FlagModel will use all available GPUs when encoding. Please set `os.environ["CUDA_VISIBLE_DEVICES"]` to select specific GPUs.
You also can set `os.environ["CUDA_VISIBLE_DEVICES"]=""` to make all GPUs unavailable.
#### Using Sentence-Transformers
You can also use the `bge` models with [sentence-transformers](https://www.SBERT.net):
```
pip install -U sentence-transformers
```
```python
from sentence_transformers import SentenceTransformer
sentences_1 = ["样例数据-1", "样例数据-2"]
sentences_2 = ["样例数据-3", "样例数据-4"]
model = SentenceTransformer('BAAI/bge-large-zh-v1.5')
embeddings_1 = model.encode(sentences_1, normalize_embeddings=True)
embeddings_2 = model.encode(sentences_2, normalize_embeddings=True)
similarity = embeddings_1 @ embeddings_2.T
print(similarity)
```
For s2p(short query to long passage) retrieval task,
each short query should start with an instruction (instructions see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list)).
But the instruction is not needed for passages.
```python
from sentence_transformers import SentenceTransformer
queries = ['query_1', 'query_2']
passages = ["样例文档-1", "样例文档-2"]
instruction = "为这个句子生成表示以用于检索相关文章:"
model = SentenceTransformer('BAAI/bge-large-zh-v1.5')
q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True)
p_embeddings = model.encode(passages, normalize_embeddings=True)
scores = q_embeddings @ p_embeddings.T
```
#### Using Langchain
You can use `bge` in langchain like this:
```python
from langchain.embeddings import HuggingFaceBgeEmbeddings
model_name = "BAAI/bge-large-en-v1.5"
model_kwargs = {'device': 'cuda'}
encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
model = HuggingFaceBgeEmbeddings(
model_name=model_name,
model_kwargs=model_kwargs,
encode_kwargs=encode_kwargs,
query_instruction="为这个句子生成表示以用于检索相关文章:"
)
model.query_instruction = "为这个句子生成表示以用于检索相关文章:"
```
#### Using HuggingFace Transformers
With the transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of the first token (i.e., [CLS]) as the sentence embedding.
```python
from transformers import AutoTokenizer, AutoModel
import torch
# Sentences we want sentence embeddings for
sentences = ["样例数据-1", "样例数据-2"]
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh-v1.5')
model = AutoModel.from_pretrained('BAAI/bge-large-zh-v1.5')
model.eval()
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# for s2p(short query to long passage) retrieval task, add an instruction to query (not add instruction for passages)
# encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, cls pooling.
sentence_embeddings = model_output[0][:, 0]
# normalize embeddings
sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)
print("Sentence embeddings:", sentence_embeddings)
```
#### Usage of the ONNX files
```python
from optimum.onnxruntime import ORTModelForFeatureExtraction # type: ignore
import torch
from transformers import AutoModel, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-en-v1.5')
model = AutoModel.from_pretrained('BAAI/bge-large-en-v1.5', revision="refs/pr/13")
model_ort = ORTModelForFeatureExtraction.from_pretrained('BAAI/bge-large-en-v1.5', revision="refs/pr/13",file_name="onnx/model.onnx")
# Sentences we want sentence embeddings for
sentences = ["样例数据-1", "样例数据-2"]
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# for s2p(short query to long passage) retrieval task, add an instruction to query (not add instruction for passages)
# encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt')
model_output_ort = model_ort(**encoded_input)
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# model_output and model_output_ort are identical
```
#### Usage via infinity
Its also possible to deploy the onnx files with the [infinity_emb](https://github.com/michaelfeil/infinity) pip package.
```python
import asyncio
from infinity_emb import AsyncEmbeddingEngine, EngineArgs
sentences = ["Embed this is sentence via Infinity.", "Paris is in France."]
engine = AsyncEmbeddingEngine.from_args(
EngineArgs(model_name_or_path = "BAAI/bge-large-en-v1.5", device="cpu", engine="optimum" # or engine="torch"
))
async def main():
async with engine:
embeddings, usage = await engine.embed(sentences=sentences)
asyncio.run(main())
```
### Usage for Reranker
Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding.
You can get a relevance score by inputting query and passage to the reranker.
The reranker is optimized based cross-entropy loss, so the relevance score is not bounded to a specific range.
#### Using FlagEmbedding
```
pip install -U FlagEmbedding
```
Get relevance scores (higher scores indicate more relevance):
```python
from FlagEmbedding import FlagReranker
reranker = FlagReranker('BAAI/bge-reranker-large', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
score = reranker.compute_score(['query', 'passage'])
print(score)
scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']])
print(scores)
```
#### Using Huggingface transformers
```python
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-large')
model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-large')
model.eval()
pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
with torch.no_grad():
inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512)
scores = model(**inputs, return_dict=True).logits.view(-1, ).float()
print(scores)
```
## Evaluation
`baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!**
For more details and evaluation tools see our [scripts](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md).
- **MTEB**:
| Model Name | Dimension | Sequence Length | Average (56) | Retrieval (15) |Clustering (11) | Pair Classification (3) | Reranking (4) | STS (10) | Summarization (1) | Classification (12) |
|:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
| [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 1024 | 512 | **64.23** | **54.29** | 46.08 | 87.12 | 60.03 | 83.11 | 31.61 | 75.97 |
| [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) | 768 | 512 | 63.55 | 53.25 | 45.77 | 86.55 | 58.86 | 82.4 | 31.07 | 75.53 |
| [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) | 384 | 512 | 62.17 |51.68 | 43.82 | 84.92 | 58.36 | 81.59 | 30.12 | 74.14 |
| [bge-large-en](https://huggingface.co/BAAI/bge-large-en) | 1024 | 512 | 63.98 | 53.9 | 46.98 | 85.8 | 59.48 | 81.56 | 32.06 | 76.21 |
| [bge-base-en](https://huggingface.co/BAAI/bge-base-en) | 768 | 512 | 63.36 | 53.0 | 46.32 | 85.86 | 58.7 | 81.84 | 29.27 | 75.27 |
| [gte-large](https://huggingface.co/thenlper/gte-large) | 1024 | 512 | 63.13 | 52.22 | 46.84 | 85.00 | 59.13 | 83.35 | 31.66 | 73.33 |
| [gte-base](https://huggingface.co/thenlper/gte-base) | 768 | 512 | 62.39 | 51.14 | 46.2 | 84.57 | 58.61 | 82.3 | 31.17 | 73.01 |
| [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1024| 512 | 62.25 | 50.56 | 44.49 | 86.03 | 56.61 | 82.05 | 30.19 | 75.24 |
| [bge-small-en](https://huggingface.co/BAAI/bge-small-en) | 384 | 512 | 62.11 | 51.82 | 44.31 | 83.78 | 57.97 | 80.72 | 30.53 | 74.37 |
| [instructor-xl](https://huggingface.co/hkunlp/instructor-xl) | 768 | 512 | 61.79 | 49.26 | 44.74 | 86.62 | 57.29 | 83.06 | 32.32 | 61.79 |
| [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 768 | 512 | 61.5 | 50.29 | 43.80 | 85.73 | 55.91 | 81.05 | 30.28 | 73.84 |
| [gte-small](https://huggingface.co/thenlper/gte-small) | 384 | 512 | 61.36 | 49.46 | 44.89 | 83.54 | 57.7 | 82.07 | 30.42 | 72.31 |
| [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | 1536 | 8192 | 60.99 | 49.25 | 45.9 | 84.89 | 56.32 | 80.97 | 30.8 | 70.93 |
| [e5-small-v2](https://huggingface.co/intfloat/e5-base-v2) | 384 | 512 | 59.93 | 49.04 | 39.92 | 84.67 | 54.32 | 80.39 | 31.16 | 72.94 |
| [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 768 | 512 | 59.51 | 42.24 | 43.72 | 85.06 | 56.42 | 82.63 | 30.08 | 73.42 |
| [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 768 | 514 | 57.78 | 43.81 | 43.69 | 83.04 | 59.36 | 80.28 | 27.49 | 65.07 |
| [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 4096 | 2048 | 57.59 | 48.22 | 38.93 | 81.9 | 55.65 | 77.74 | 33.6 | 66.19 |
- **C-MTEB**:
We create the benchmark C-MTEB for Chinese text embedding which consists of 31 datasets from 6 tasks.
Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction.
| Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering |
|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
| [**BAAI/bge-large-zh-v1.5**](https://huggingface.co/BAAI/bge-large-zh-v1.5) | 1024 | **64.53** | 70.46 | 56.25 | 81.6 | 69.13 | 65.84 | 48.99 |
| [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | 768 | 63.13 | 69.49 | 53.72 | 79.75 | 68.07 | 65.39 | 47.53 |
| [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | 512 | 57.82 | 61.77 | 49.11 | 70.41 | 63.96 | 60.92 | 44.18 |
| [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | 1024 | 64.20 | 71.53 | 54.98 | 78.94 | 68.32 | 65.11 | 48.39 |
| [bge-large-zh-noinstruct](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | 1024 | 63.53 | 70.55 | 53 | 76.77 | 68.58 | 64.91 | 50.01 |
| [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | 768 | 62.96 | 69.53 | 54.12 | 77.5 | 67.07 | 64.91 | 47.63 |
| [multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 1024 | 58.79 | 63.66 | 48.44 | 69.89 | 67.34 | 56.00 | 48.23 |
| [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | 512 | 58.27 | 63.07 | 49.45 | 70.35 | 63.64 | 61.48 | 45.09 |
| [m3e-base](https://huggingface.co/moka-ai/m3e-base) | 768 | 57.10 | 56.91 | 50.47 | 63.99 | 67.52 | 59.34 | 47.68 |
| [m3e-large](https://huggingface.co/moka-ai/m3e-large) | 1024 | 57.05 | 54.75 | 50.42 | 64.3 | 68.2 | 59.66 | 48.88 |
| [multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 768 | 55.48 | 61.63 | 46.49 | 67.07 | 65.35 | 54.35 | 40.68 |
| [multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) | 384 | 55.38 | 59.95 | 45.27 | 66.45 | 65.85 | 53.86 | 45.26 |
| [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | 1536 | 53.02 | 52.0 | 43.35 | 69.56 | 64.31 | 54.28 | 45.68 |
| [luotuo](https://huggingface.co/silk-road/luotuo-bert-medium) | 1024 | 49.37 | 44.4 | 42.78 | 66.62 | 61 | 49.25 | 44.39 |
| [text2vec-base](https://huggingface.co/shibing624/text2vec-base-chinese) | 768 | 47.63 | 38.79 | 43.41 | 67.41 | 62.19 | 49.45 | 37.66 |
| [text2vec-large](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 1024 | 47.36 | 41.94 | 44.97 | 70.86 | 60.66 | 49.16 | 30.02 |
- **Reranking**:
See [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/) for evaluation script.
| Model | T2Reranking | T2RerankingZh2En\* | T2RerankingEn2Zh\* | MMarcoReranking | CMedQAv1 | CMedQAv2 | Avg |
|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
| text2vec-base-multilingual | 64.66 | 62.94 | 62.51 | 14.37 | 48.46 | 48.6 | 50.26 |
| multilingual-e5-small | 65.62 | 60.94 | 56.41 | 29.91 | 67.26 | 66.54 | 57.78 |
| multilingual-e5-large | 64.55 | 61.61 | 54.28 | 28.6 | 67.42 | 67.92 | 57.4 |
| multilingual-e5-base | 64.21 | 62.13 | 54.68 | 29.5 | 66.23 | 66.98 | 57.29 |
| m3e-base | 66.03 | 62.74 | 56.07 | 17.51 | 77.05 | 76.76 | 59.36 |
| m3e-large | 66.13 | 62.72 | 56.1 | 16.46 | 77.76 | 78.27 | 59.57 |
| bge-base-zh-v1.5 | 66.49 | 63.25 | 57.02 | 29.74 | 80.47 | 84.88 | 63.64 |
| bge-large-zh-v1.5 | 65.74 | 63.39 | 57.03 | 28.74 | 83.45 | 85.44 | 63.97 |
| [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | 67.28 | 63.95 | 60.45 | 35.46 | 81.26 | 84.1 | 65.42 |
| [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | 67.6 | 64.03 | 61.44 | 37.16 | 82.15 | 84.18 | 66.09 |
\* : T2RerankingZh2En and T2RerankingEn2Zh are cross-language retrieval tasks
## Train
### BAAI Embedding
We pre-train the models using [retromae](https://github.com/staoxiao/RetroMAE) and train them on large-scale pairs data using contrastive learning.
**You can fine-tune the embedding model on your data following our [examples](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune).**
We also provide a [pre-train example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/pretrain).
Note that the goal of pre-training is to reconstruct the text, and the pre-trained model cannot be used for similarity calculation directly, it needs to be fine-tuned.
More training details for bge see [baai_general_embedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md).
### BGE Reranker
Cross-encoder will perform full-attention over the input pair,
which is more accurate than embedding model (i.e., bi-encoder) but more time-consuming than embedding model.
Therefore, it can be used to re-rank the top-k documents returned by embedding model.
We train the cross-encoder on a multilingual pair data,
The data format is the same as embedding model, so you can fine-tune it easily following our [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker).
More details please refer to [./FlagEmbedding/reranker/README.md](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker)
## Contact
If you have any question or suggestion related to this project, feel free to open an issue or pull request.
You also can email Shitao Xiao(stxiao@baai.ac.cn) and Zheng Liu(liuzheng@baai.ac.cn).
## Citation
If you find this repository useful, please consider giving a star :star: and citation
```
@misc{bge_embedding,
title={C-Pack: Packaged Resources To Advance General Chinese Embedding},
author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff},
year={2023},
eprint={2309.07597},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
## License
FlagEmbedding is licensed under the [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.