BiomedNLP-PubMedBERT finetuned on textual entailment (NLI)

The microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext finetuned on the MNLI dataset. It should be useful in textual entailment tasks involving biomedical corpora.

Usage

Given two sentences (a premise and a hypothesis), the model outputs the logits of entailment, neutral or contradiction.

You can test the model using the HuggingFace model widget on the side:

  • Input two sentences (premise and hypothesis) one after the other.
  • The model returns the probabilities of 3 labels: entailment(LABEL:0), neutral(LABEL:1) and contradiction(LABEL:2) respectively.

To use the model locally on your machine:

# import torch
# device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

from transformers import AutoTokenizer, AutoModelForSequenceClassification
  
tokenizer = AutoTokenizer.from_pretrained("lighteternal/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-mnli")
model = AutoModelForSequenceClassification.from_pretrained("lighteternal/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext-finetuned-mnli")

premise = 'EpCAM is overexpressed in breast cancer'
hypothesis = 'EpCAM is downregulated in breast cancer.'

# run through model pre-trained on MNLI
x = tokenizer.encode(premise, hypothesis, return_tensors='pt',
                     truncation_strategy='only_first')
logits = model(x)[0]

probs = logits.softmax(dim=1)
print('Probabilities for entailment, neutral, contradiction \n', np.around(probs.cpu().
                                                                           detach().numpy(),3))
# Probabilities for entailment, neutral, contradiction 
# 0.001 0.001 0.998

Metrics

Evaluation on classification accuracy (entailment, contradiction, neutral) on MNLI test set:

Metric Value
Accuracy 0.8338

See Training Metrics tab for detailed info.

Downloads last month
124
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.