Semantic Textual Similarity for the Greek language using Transformers and Transfer Learning

By the Hellenic Army Academy (SSE) and the Technical University of Crete (TUC)

This is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.

We follow a Teacher-Student transfer learning approach described here to train an XLM-Roberta-base model on STS using parallel EN-EL sentence pairs.

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
model = SentenceTransformer('{MODEL_NAME}')

sentences1 = ['Το κινητό έπεσε και έσπασε.',
             'Το κινητό έπεσε και έσπασε.',
             'Το κινητό έπεσε και έσπασε.']

sentences2 = ["H πτώση κατέστρεψε τη συσκευή.",
             "Το αυτοκίνητο έσπασε στα δυο.",
             "Ο υπουργός έπεσε και έσπασε το πόδι του."]


embeddings1 = model.encode(sentences1, convert_to_tensor=True)
embeddings2 = model.encode(sentences2, convert_to_tensor=True)

#Compute cosine-similarities (clone repo for util functions)
from sentence_transformers import util
cosine_scores = util.pytorch_cos_sim(embeddings1, embeddings2)

#Output the pairs with their score
for i in range(len(sentences1)):
    print("{} 		 {} 		 Score: {:.4f}".format(sentences1[i], sentences2[i], cosine_scores[i][i]))
    
#Outputs:
#Το κινητό έπεσε και έσπασε. 		 H πτώση κατέστρεψε τη συσκευή. 		 Score: 0.6741
#Το κινητό έπεσε και έσπασε. 		 Το αυτοκίνητο έσπασε στα δυο. 		 Score: 0.5067
#Το κινητό έπεσε και έσπασε. 		 Ο υπουργός έπεσε και έσπασε το πόδι του. 		 Score: 0.4548

Usage (HuggingFace Transformers)

Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

from transformers import AutoTokenizer, AutoModel
import torch


#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
model = AutoModel.from_pretrained(

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, max pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)

Evaluation Results

Similarity Evaluation on STS.en-el.txt (translated manually for evaluation purposes)

We measure the semantic textual similarity (STS) between sentence pairs in different languages:

cosine_pearson cosine_spearman euclidean_pearson euclidean_spearman manhattan_pearson manhattan_spearman dot_pearson dot_spearman
0.834474802920369 0.845687403828107 0.815895882192263 0.81084300966291 0.816333562677654 0.813879742416394 0.7945167996031 0.802604238383742

Translation

We measure the translation accuracy. Given a list with source sentences, for example, 1000 English sentences. And a list with matching target (translated) sentences, for example, 1000 Greek sentences. For each sentence pair, we check if their embeddings are the closest using cosine similarity. I.e., for each src_sentences[i] we check if trg_sentences[i] has the highest similarity out of all target sentences. If this is the case, we have a hit, otherwise an error. This evaluator reports accuracy (higher = better).

src2trg trg2src
0.981 0.9775

Training

The model was trained with the parameters:

DataLoader:

torch.utils.data.dataloader.DataLoader of length 135121 with parameters:

{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}

Loss:

sentence_transformers.losses.MSELoss.MSELoss

Parameters of the fit()-Method:

{
    "callback": null,
    "epochs": 4,
    "evaluation_steps": 1000,
    "evaluator": "sentence_transformers.evaluation.SequentialEvaluator.SequentialEvaluator",
    "max_grad_norm": 1,
    "optimizer_class": "<class 'transformers.optimization.AdamW'>",
    "optimizer_params": {
        "correct_bias": false,
        "eps": 1e-06,
        "lr": 2e-05
    },
    "scheduler": "WarmupLinear",
    "steps_per_epoch": null,
    "warmup_steps": 10000,
    "weight_decay": 0.01
}

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 400, 'do_lower_case': False}) with Transformer model: XLMRobertaModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)

Acknowledgement

The research work was supported by the Hellenic Foundation for Research and Innovation (HFRI) under the HFRI PhD Fellowship grant (Fellowship Number:50, 2nd call)

Citing & Authors

Citation info for Greek model: TBD

Based on the transfer learning approach of Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation

Downloads last month
637
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for lighteternal/stsb-xlm-r-greek-transfer

Finetunes
5 models