metadata
datasets:
- abideen/Cosmopedia-100k-pretrain
tags:
- Mistral
- 1bit
- bitnet
- abideen
- M7
- Liminerity
"""this is my second attempt at converting a model float16 quantized model to 1.5bit. i used my model liminerity/M7-7b for the base model and trained on: abideen/cosmopedia-100k-pretain dataset and used his google colab project to make this"""
#EXAMPLE INFERENCE CODE FROM ABIDEEN'S COLAB PROJECT
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers.models.llama.modeling_llama import *
# Load a pretrained BitNet model
model = "liminerity/Bitnet-M7-70M"
tokenizer = AutoTokenizer.from_pretrained(model)
model = AutoModelForCausalLM.from_pretrained(model)
def activation_quant(x):
scale = 127.0 / x.abs().max(dim=-1, keepdim=True).values.clamp_(min=1e-5)
y = (x * scale).round().clamp_(-128, 127)
y = y / scale
return y
def weight_quant(w):
scale = 1.0 / w.abs().mean().clamp_(min=1e-5)
u = (w * scale).round().clamp_(-1, 1)
u = u / scale
return u
class BitLinear(nn.Linear):
def forward(self, x):
w = self.weight # a weight tensor with shape [d, k]
x = x.to(w.device)
RMSNorm = LlamaRMSNorm(x.shape[-1]).to(w.device)
x_norm = RMSNorm(x)
# A trick for implementing Straight−Through−Estimator (STE) using detach()
x_quant = x_norm + (activation_quant(x_norm) - x_norm).detach()
w_quant = w + (weight_quant(w) - w).detach()
y = F.linear(x_quant, w_quant)
return y
def convert_to_bitnet(model, copy_weights):
for name, module in model.named_modules():
# Replace linear layers with BitNet
if isinstance(module, LlamaSdpaAttention) or isinstance(module, LlamaMLP):
for child_name, child_module in module.named_children():
if isinstance(child_module, nn.Linear):
bitlinear = BitLinear(child_module.in_features, child_module.out_features, child_module.bias is not None).to(device="cuda:0")
if copy_weights:
bitlinear.weight = child_module.weight
if child_module.bias is not None:
bitlinear.bias = child_module.bias
setattr(module, child_name, bitlinear)
# Remove redundant input_layernorms
elif isinstance(module, LlamaDecoderLayer):
for child_name, child_module in module.named_children():
if isinstance(child_module, LlamaRMSNorm) and child_name == "input_layernorm":
setattr(module, child_name, nn.Identity().to(device="cuda:0"))
convert_to_bitnet(model, copy_weights=True)
model.to(device="cuda:0")
prompt = "What is Machine Learning?"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
generate_ids = model.generate(inputs.input_ids, max_length=50)
tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]