language:
- fr
license: mit
datasets:
- MLSUM
pipeline_tag: text-classification
widget:
- text: >-
La bourse de paris en forte baisse après que des canards ont envahit le
parlement.
tags:
- text-classification
- flaubert
Classification d'articles de presses avec Flaubert
Ce modèle ce base sur le modèle flaubert/flaubert_base_cased
et à été fine-tuné en utilisant des articles de presse issus de la base de données MLSUM.
Dans leur papier, les équipes de reciTAL et de la Sorbonne ont proposé comme ouverture de réaliser un modèle de détection de topic sur les articles de presse.
Les topics ont été extrait à partir des URL et nous avons effectué une étape de regroupement de topics pour éliminer ceux avec un trop faible volume et ceux qui paraissaient redondants.
Nous avons finalement utilisé la liste de topics suivante:
- Culture
- Economie
- Education
- Environement
- Justice
- Opinion
- Politique
- Societe
- Sport
- Technologie
Entrainement
Nous avons benchmarké différents modèles en les entrainant sur différentes parties des articles (titre, résumé, corps et titre+résumé) et avec des échantillons d'apprentissage de tailles différentes.
Les modèles ont été entrainé sur un cloud Azure avec des Tesla V100.
Résulats
Les lignes correspondent aux labels prédits et les colonnes aux véritables topics. Les pourcentages sont calculés sur les colonnes.
Utilisation
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from transformers import TextClassificationPipeline
model_name = 'lincoln/flaubert-mlsum-topic-classification'
loaded_tokenizer = AutoTokenizer.from_pretrained(model_name)
loaded_model = AutoModelForSequenceClassification.from_pretrained(model_name)
nlp = TextClassificationPipeline(model=loaded_model, tokenizer=loaded_tokenizer)
nlp("Le Bayern Munich prend la grenadine.")
Citation
@article{scialom2020mlsum,
title={MLSUM: The Multilingual Summarization Corpus},
author={Thomas Scialom and Paul-Alexis Dray and Sylvain Lamprier and Benjamin Piwowarski and Jacopo Staiano},
year={2020},
eprint={2004.14900},
archivePrefix={arXiv},
primaryClass={cs.CL}
}