|
---
|
|
language:
|
|
- vi
|
|
license: apache-2.0
|
|
base_model: openai/whisper-small
|
|
tags:
|
|
- generated_from_trainer
|
|
datasets:
|
|
- common_voice_17_0
|
|
metrics:
|
|
- wer
|
|
model-index:
|
|
- name: Whisper small vi - Ox
|
|
results:
|
|
- task:
|
|
name: Automatic Speech Recognition
|
|
type: automatic-speech-recognition
|
|
dataset:
|
|
name: common_voice_17_0
|
|
type: common_voice_17_0
|
|
config: vi
|
|
split: test
|
|
args: vi
|
|
metrics:
|
|
- name: Wer
|
|
type: wer
|
|
value: 31.26665341022072
|
|
---
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
should probably proofread and complete it, then remove this comment. -->
|
|
|
|
# Whisper small vi - Ox
|
|
|
|
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the common_voice_17_0 dataset.
|
|
It achieves the following results on the evaluation set:
|
|
- Loss: 1.0138
|
|
- Wer: 31.2667
|
|
|
|
## Model description
|
|
|
|
More information needed
|
|
|
|
## Intended uses & limitations
|
|
|
|
More information needed
|
|
|
|
## Training and evaluation data
|
|
|
|
More information needed
|
|
|
|
## Training procedure
|
|
|
|
### Training hyperparameters
|
|
|
|
The following hyperparameters were used during training:
|
|
- learning_rate: 1e-05
|
|
- train_batch_size: 16
|
|
- eval_batch_size: 8
|
|
- seed: 42
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
|
- lr_scheduler_type: linear
|
|
- lr_scheduler_warmup_steps: 500
|
|
- num_epochs: 3.0
|
|
- mixed_precision_training: Native AMP
|
|
|
|
### Training results
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|
|
|
| 0.2276 | 0.08 | 1000 | 0.7506 | 29.8509 |
|
|
| 0.1768 | 0.16 | 2000 | 0.8114 | 31.2189 |
|
|
| 0.1828 | 0.24 | 3000 | 0.8569 | 31.2985 |
|
|
| 0.1632 | 0.32 | 4000 | 0.8523 | 31.9268 |
|
|
| 0.1566 | 0.4 | 5000 | 0.9062 | 31.9149 |
|
|
| 0.1532 | 0.48 | 6000 | 0.8914 | 31.4496 |
|
|
| 0.1593 | 0.56 | 7000 | 0.9342 | 31.9825 |
|
|
| 0.1411 | 0.64 | 8000 | 0.9412 | 32.0302 |
|
|
| 0.1531 | 0.72 | 9000 | 0.9456 | 31.6206 |
|
|
| 0.1246 | 0.8 | 10000 | 0.9452 | 31.7240 |
|
|
| 0.1336 | 0.88 | 11000 | 0.9622 | 31.1195 |
|
|
| 0.1392 | 0.96 | 12000 | 0.9638 | 31.3939 |
|
|
| 0.0725 | 1.04 | 13000 | 1.0032 | 31.5649 |
|
|
| 0.0838 | 1.12 | 14000 | 1.0346 | 31.7916 |
|
|
| 0.0766 | 1.2 | 15000 | 1.0138 | 31.2667 |
|
|
|
|
|
|
### Framework versions
|
|
|
|
- Transformers 4.39.3
|
|
- Pytorch 2.4.1
|
|
- Datasets 3.0.1
|
|
- Tokenizers 0.15.2
|
|
|