linoyts's picture
linoyts HF staff
End of training
d2ef5c7 verified
---
license: other
library_name: diffusers
tags:
- text-to-image
- diffusers-training
- diffusers
- lora
- flux
- flux-diffusers
- template:sd-lora
base_model: black-forest-labs/FLUX.1-dev
instance_prompt: a TOK hugging face emoji
widget: []
---
<!-- This model card has been generated automatically according to the information the training script had access to. You
should probably proofread and complete it, then remove this comment. -->
# Flux DreamBooth LoRA - linoyts/huggy_flux_1_1000_custom
<Gallery />
## Model description
These are linoyts/huggy_flux_1_1000_custom DreamBooth LoRA weights for black-forest-labs/FLUX.1-dev.
The weights were trained using [DreamBooth](https://dreambooth.github.io/) with the [Flux diffusers trainer](https://github.com/huggingface/diffusers/blob/main/examples/dreambooth/README_flux.md).
Was LoRA for the text encoder enabled? False.
## Trigger words
You should use `a TOK hugging face emoji` to trigger the image generation.
## Download model
[Download the *.safetensors LoRA](linoyts/huggy_flux_1_1000_custom/tree/main) in the Files & versions tab.
## Use it with the [🧨 diffusers library](https://github.com/huggingface/diffusers)
```py
from diffusers import AutoPipelineForText2Image
import torch
pipeline = AutoPipelineForText2Image.from_pretrained("black-forest-labs/FLUX.1-dev", torch_dtype=torch.bfloat16).to('cuda')
pipeline.load_lora_weights('linoyts/huggy_flux_1_1000_custom', weight_name='pytorch_lora_weights.safetensors')
image = pipeline('a TOK hugging face emoji').images[0]
```
For more details, including weighting, merging and fusing LoRAs, check the [documentation on loading LoRAs in diffusers](https://huggingface.co/docs/diffusers/main/en/using-diffusers/loading_adapters)
## License
Please adhere to the licensing terms as described [here](https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.md).
## Intended uses & limitations
#### How to use
```python
# TODO: add an example code snippet for running this diffusion pipeline
```
#### Limitations and bias
[TODO: provide examples of latent issues and potential remediations]
## Training details
[TODO: describe the data used to train the model]